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�This adventure started in an anodine way: I went to ‘Le monde en tique’, the data-processing library of Paris. Wandering around, a book caught my attention: ‘A retargetable C compiler: design and implementation by Christopher Fraser and David Hanson’. Mmm interesting.



I took the book, started reading. A whole C compiler, neatly explained. there was even a DOS implementation. This IS interesting I told myself. I bought the book, went home, read some chapters.



I was working since several years in a compiler environment project. I had written an editor ‘Wedit’ and sold some copies of it to fellow programmers in Paris. But my editor project was stuck: it missed the compiler. Once people bought the compiler with its integrated editor, they wouldn’t think about using any other one. The editor was actually considered as an afterthought. The effort of learning a new editor was considered too big. Besides, the new programming environments were more and more closed. They were more tightly integrated, so Wedit couldn’t easily start a compilation, or call the debugger.



Well, it would be nice to build a whole environment...



But it was a monstruous amount of work! lcc came with a compiler generating just assembler mnemonics: there was no assembler, no linker, no library, no resource compiler, no resource editor, no debugger.



But then... this would be an opportunity to write an assembler, a linker and a debugger!



I talked to some friends. Everyone told me I was completely crazy. But this, I knew already. So I started doing it.



This was like beginning 1995 or so. It is 1997 now. The assembler is written, together with the linker, and the import librarian, the resource compiler, the resource editor, and a first version of the debugger is out.



This document, as you can see in the ‘stubs’ (sections containing just a title) is not finished, as this project is not finished. I thought it could be useful to understand what is happening, so I include it in the project documentation.



Books are dangerous. They can change people’s lives. The book of Mr Fraser and Mr Hanson changed mine, and I am grateful to them for having published their work. In the process of developing the optimizer, or adjusting it to the windows environment, I have several times destroyed essential data structures of the compiler. But it has never crashed.



Never.



It is a solidly built piece of software, full of useful assertions, that will pinpoint exactly where you went wrong. It has a clean design, with a good separation of the front end/back end, and several functions that are really beautiful to read: take a look at ‘listnodes’ in dag.c for instance.



�Software

Software is the art of illusion. You ‘push’ a button, and you see the button change its form, as it existed. What really happens, is only that a click in the mouse button (THAT button exists of course), will select a different bitmap for the screen area where the button is drawn. Nothing has moved, but it looks like.



The whole windows system, is based upon mainting illusions about the existence of ‘windows’, and about a ‘desktop’. Graphics are used extensively to reinforce this paradigm, and to present to the user a number of objects (called ‘controls’ in techspeak) like buttons, trees, list boxes etc that exhibit a standard behaviour.



A compiler gives you the impression that the machine speaks a high level language. Those languages allow you to give to the machine a more abstract kind of commands, that the commands the machine really understands. This process of translating a standardized language into machine instructions is called compiling.



We have to be aware that all ‘high-level’ languages are just machine ‘languages’. They look similar somewhat to the written languages we use, specially english, but they are in fact completely different.



The language lcc-win32 uses as input is the C language, as defined by the ANSI comitee for standards. This language is fairly close to the machine, and doesn’t have the expressive power of more evolved languages like lisp or smalltalk, for instance. This can be seen as a weakness, or as a strength, depending on your point of view. 



If you are interested in ignoring most software abstractions and writing programs that are close to the native windows API, C will do this very well. On the other side, if you do not want to be bothered with memory management, obscure machine details, and you would like to use the ‘object oriented programming’ paradigm, C will fail short of your expectations and become an obstacle to expressing your ideas into programs. Java would be a better choice.



The illusions created by software break down sometimes. This events are called ‘bugs’, in techspeak, and show us suddenly what is really behind all software. We have all seen this, but tend to forget them as soon as possible, becoming again absorbed by the program’s display. For instance, bugs in the NT operating system destroy the desktop and show us a screen full of awe inspiring numbers, that give the user a glimpse into the innards of the machine he/she is working with.



A closer look to the compilation process.

Lcc-win32 supports the separate compilation model, i.e. you translate first one or several modules separatedly, and then give all this modules to a program called linker, that will assemble them into a single module called executable file. This is then, a two phase process.

The objective of the first phase is to produce a special file called object file�. The details of this first phase are as follows:

The compiler� will open a file of C instructions, and will make several transformations of it: First,it will pre-process those instructions following the pre-processor directives, and produce a translated set of C instructions, that contain all the files indicated in the include directives, have been stripped from all comments, and several other transformations like macro-expansions, etc.

The result of this pre-processing will be feed into the compiler proper, that will output a series of more basic instructions called ‘intermediate language’ instructions. Those instructions form the vocabulary of the virtual machine that lcc assumes as an abstraction of the real machine.

Those instructions will be given to the emitter, that will select the best sequence of real machine instructions from several possible choices. This is called labelling the intermediate language tree.

The labelled tree will be used by the code generator to output ASCII mnemonics that correspond to each intermediate level instruction.

If the user specified an optimization pass, those ASCII mnemonics will be given to the peephole optimizer, that will further work on them, mostly with the objective of eliminating instructions and improving the code emitted by the code generator ‘gen’.

Then, those text mnemonics will be passed to the assembler, that will translate them into numerical codes, that the CPU can understand. All those numbers will be packed in a special format called ‘COFF’�, and written to a file called ‘object’ file.

The second phase is the ‘link-editor’ phase. This program (called lcclnk.exe in the lcc-win32 system) assembles all modules produced in the first phase, together with optional resources files produced by the resource editor, into a single file, that the operating system knows how to load and run.

Windows uses a set of files called rc files, to describe in a textual form, several resources used by the program like menus, dialog boxes, message strings, etc etc. This files are written in a special language, with a very simple grammar.� This files can be compiled using the resource compiler lrc.exe’, that transforms an rc file into a binary .res file, in a similar fashion that the C compiler transforms the .c file into an .obj file.

Windows supports an operating system extension called ‘dynamic linking’, i.e. linking a program when it is loaded rather than in the linking phase described above. If you use this feature, you build an executable that is called dll� Lcc-win32 supports dynamic linking, and their associated definition files (.def).



Lcc’s intermediate language

Lcc is a retargetable compiler, i.e. the same parser (or front-end in techspeak) can be used for several different machines. This is achieved by using an abstract machine model, that is mapped into each specific machine using a machine description. The machine description is nothing more than a sophisticated table of correspondences between the instructions of the abstract machine, and the instructions of the concrete machine that will execute the program being compiled, in our case an x86 processor. The machine description is stored in the win32.md source file. The utility ‘lburg.exe’ translates a machine description into a C language file that can be compiled by the C compiler.



It should be noted here, that lcc-win32 assumes at least a 486 processor. If you have an old machine with a 386, lcc-win32 will NOT run, since sometimes in its code instructions like ‘xadd’ are used, that do not exist in the 386 series.�



�Modifying lcc to make it run under windows

Porting the code

Lcc’s code ported without great difficulties to Win32. It is a code without surprises, well written, and after only a few minor modifications, I had it running under Win32’s command line.

Integrating the preprocessor into lcc

The traditional approach, used by Unix compilers like gcc, is that the preprocessor produces an intermediate file as output, that is read from disk by the compiler proper, that produces an assembly file. That file is again read from disk by the assembler, that produces an object file. This approach allows a clean separation from each tool, but has an enormous drawback: it is very slow. The amount of disk I/O that the machine is forced to do is considerable.



I decided to avoid any intermediate files. For some time I played with the idea of using the pipe mechanism of Win32 to make all tools communicate, but after a while, I decided for a tight coupling of all three tools.  Pipes are bound to be slower than a program specific solution because:

You have to copy the data into an operating system buffer

There, the OS copies the data into another buffer (probably) to pass it to the receiving program

The receiving program has to copy it again into its own buffers

Many context-switches between both programs and the OS happen in between.



Better mechanisms exist of course, like shared files in memory for instance. But then, you have to take into account the synchronization problems and other goodies... And all that for doing what? Just for sharing a bufferfull of data between two modules?



The fastest solution that I know of, is to link the two modules in a single program and just share the buffers. Period. No context switches, no copy, no synchronization problems since you have only a single thread of execution. And this solution follows a guildeline I try always to follow: the KISS principle.



The preprocessor does the only I/O operation that is absolutely necessary, and puts at the disposition of the compiler a buffer containing the characters preprocessed so far. The compiler reads this buffer, and generates a second buffer for the assembler, that reads it, and generates the object file, making the second disk I/O.  No copy is needed, since the buffers are just shared and only a pointer to the start of it is passed around.



The modifications to lcc that were necessary to do this were actually very small. The main one was in the code of the preprocessor: instead of reading the file from start to end, it should read more input only when the compiler needs it.

Supporting Microsoft’s extensions

A purely ANSI compiler will not compile the standard <windows.h> header files. The main stumbling block is the ‘stdcall’ calling convention.



Calling conventions are a standard for pushing the arguments into the stack, preparing for a function call, and for cleaning it up after the call, removing the arguments pushed into it. The normal calling conversion in C is to push the arguments from right to left, and to generate code after the call for adjusting the stack.

The _stdcall calling convention

This calling convention is used in almost all the Win32 system calls. Notable exceptions are the multi-media libraries, that use the normal calling convention. Functions that are _stdcall’ should:

Push the arguments from right to left

Do not adjust the stack after the call since the called function adjusts it when it executes the ‘ret’ instruction.

Add the stack size to the function name. For instance for a function like:

	int _stdcall fn(int,int);

	the name of the function should be changed to _fn@8.

This needed a lot of modifications to lcc’s source code.

I added the _stdcall keyword to the lexer, so that it would recognize it (see lex.c)

I added a flag to the symbol and type structures so that this information would eventually arrive to ‘emitasm’ in gen.c.

I modified many functions in ‘decl.c’ to keep that flag, accept it, pass it around, etc.

In gen.c I planted a test for that flag, when it emits a ‘call’ instruction. If the test suceeds, it will not emit the ‘add $x , %esp’ code. 

In ‘win32.c’ I test for that flag when building an internal symbol name. If it is set, I add the famous ‘@8’ to the name. Besides, in the procedure ‘function’, I emit a ‘ret stacksize’ instead of just ‘ret’. This means that the keyword will not only work for system calls, but it can be used in user programs too. Now that it is done, I recommend its use, since for each call you save 4 bytes. For a function that is called very often this can make significant space savings.

Since there was in the headers sometimes ‘_stdcall’ or sometimes ‘__stdcall’ I added an internal #define to convert from one to the other.

The different #pragmas

I added several pragmas to lcc to support some options needed under windows: This pragmas are now case insensitive, and oversight from the earlier versions of lcc-win32.



#pragma pack(n)

This will set the alignment within structures to 1 (no alignment) to 4 or 8. Other values will be accepted but are no very useful...

#pragma optimize(on|off)

This will turn on or off the optimizer for a certain part of the source

#pragma section(name)

This will set the current section name in the object code. Only needed for some obscure object code manipulations.

#pragma ref <symbol>

      The given symbol will be marked as used.

Structured exception handling

Writing the startup code

When you click in a program icon, or just type the name of a program at the command line, you invoke implicitely a program that is one of the basic pieces of any operating system: the program loader. This program, will search and read for an executable file of the name that corresponds to the name you typed in, or to the program the icon points to. It will load that program into RAM, fix it, and then pass control to the program’s entry-point. This is NOT the ‘main’ function (or the WinMain) but a piece of code that prepares the execution of the main line, doing some initializations first.



The startup of lcc comes in two flavors: the normal startup of an executable, called lcccrt0.obj, and the dll startup called libcrt0.obj. Both object files reside in the ‘lib’ directory.



The task of that piece of code is to perform the initialization of the standard input/output, and call the ‘main’ or ‘WinMain’ function. Actually, the startup will always call the ‘_main’ function. If the program is a windows program, it doesn’t have any ‘main’ function, so the linker will find a ‘main’ function in the ‘libc.lib’ library file, and link it in. That function will call WinMain. This allows the lcc-win32 system to use only one startup for all .exe programs.



After the main function returns, the startup code calls the exit function, that returns control to the operating system.

Writing the stackprobe code

In the firsts versions of lcc, this program would generate a trap:



main()

{

	int table[4096];

}



would generate a fault, even if the program does nothing. After much research, I found the problem: The fault occurred in the procedure’s prologue, when the generated code executed the 

	sub	$16384,%esp

instruction.

As we will see in the linker chapter, Win32 reserves 1 MB of virtual address space for the program. Those pages aren’t commited, they are just reserved by the system. They will be actually commited when the program touches them, as it uses more stack space. 



The mechanism for detecting this is simple. Normally, only the first page (the first 4096 locations) of that space is commited. The next page is the ‘guard page’. Whenever the program touches it, the system will commit it, and reserve a new stack guard page. When the stack grows by more than 4096 locations in a single jump however, this mechanism would fail. The system  detects this, and this explains the fault.



To correct this problem, I modified the code in ‘function’ (file win32.c) to test if the framesize is bigger than 4096. If it is, it will generate the following instructions:

	mov	$size,%eax

	call	__stackprobe

where ‘$size’ is the size of the stackframe.



The function __stackprobe is a complicated one, and there is no possible equivalent for it in the C language. Here it is:



__stackprobe:				; argument: stacksize in eax

        pop     %ecx		; pops return address

_$loop:					; for each page we touch a memory

        sub     $4096,%esp	; location with (%esp)

        sub     $4096,%eax

        test    (%esp),%eax	; access a memory location in the

        cmp     $4096,%eax	; page

        jae     _$loop

        sub     %eax,%esp	; do final stack adjustment

        test    (%esp),%eax	; touch the last page

        jmp     %ecx		; jmp to address popped above



The first instruction pops the return address pushed by the call instruction, that called this procedure, saving it in ecx for later use. Then, I substract 4096 from the stack pointer and from the argument in eax. This done, I just access a memory location pointed by esp with a test instruction, that doesn’t use any register. Here a trap occurs, the OS reserves a new stack page, and returns control to me.



Well, there is only to test if more whole pages are needed. If yes I loop, if not, I substract the remainder in eax from the stack, do a final memory access and jump to the return address in ecx. This procedure takes only 29 bytes of code.

The windows.h and the other header files

A big problem were the header files. Those files make more than 4MB in modern Win32 compilers, and they are absoluteley needed for a compiler system that should run under windows.



I had luck however, since the Free Software Foundation (GNU) started porting their compiler system ‘gcc’ to windows too, and they proposed to Scott Christley,of the net community to rewrite the windows header files. I downloaded with excitement the header files, and continued the work of Scott. I added several files, and above all tried to compress the headers as much as possible.



I am convinced that the compilation process now is absolutely I/O bound. With the powerful CPUs around, the disk time access overweights any other considerations. So, I thought, the best would be that the header files would be as small as possible.



Normally you do not think about it when you write your header files. You write comments into them, and size considerations are far from your mind. And this is good, and should be so. The problem is, that in very big files, this adds up to a very significant portion of the compilations time, since the compiler has to parse that comment over and over again, at each compilation in fact.



I took the following approach when rewriting the headers of Scott:

Eliminate all comments

Eliminate all white space and leave only what is absolutely necessary

Eliminate all redundant identifiers in function calls: for instance the function

BOOL WINAPI MyWindowsApi(HWND hwnd,LPSTR name,HANDLE handleToProcess);

would become:

BOOL WINAPI MyWindowsApi(HWND,LPSTR,HANDLE);

This allowed for a significant amount of space savings. It is true that many of the names are useful for giving you an idea of what that function does, but let’s face it. lcc-win32 has no replacement for the documentation of the Win32 system, that you should buy elsewhere. Besides I think it would be very risky of deducing what the function does and what its parameters are just by looking at the documentation of it in ... a function prototype!



Every effort was done to reduce the size of windows.h to its actual size, about 430K. This compares significantly better to the 4MB the compiler has to read when compiling with the header files of MSVC, and is smaller even than the characters read when you define the keyword WIN32_LEAN_AND_MEAN, that somehow reduces the size of the headers.



This makes lcc a fast compiler, even if it doesn’t support the precompiler header files option.



I tried to follow somehow the structure of MSVC, but really, there is no close correspondence here. Just include <windows.h> and any special files you need. Most of them like the property sheets definitions etc are included in Windows.h, so there isn’t a lot of files to include at each compilation. It is true that this contradicts somehow the objective of small size above but the problem is that re-creating that file structure would be too complicated now. Frankly I do not have the energy to do it.



Generating the debugging information

Lcc generates debug information that follows the NB09 standard as defined by Intel and Microsoft in their document about debugging information. This means that the debugging info is compatible with the MSVC debugger, that should work better than lcc’s one for a certain time still.



This information will be generated in the file CV.C in the source tree of lcc.



Generating the browsing information

Using the -x command line option, lcc generates cross referencing information in .xrf files. This files contain information about all the symbols used by the compilation unit. The name of the .xrf file is derived from the input file, i.e. if you compile foo.c, the .xrf file is named foo.xrf.



This files can be used by any tool that desires to gather information about the program. Their format is as follows:

Each symbol used/defined in the compilation unit is in a line by itself. The files are in plain text (ascii). I thought for a while of using a binary, more space-efficient format, but this would put this information out of the reach of others, that could surely use it as well as Wedit does. So, I decided to stay in ascii.



The first letter in the line determines the type of information that follows:



Letter�Meaning��F�File. A path for the input file follows��f�File A path for an include file follows��t�Structure The name of the type, the index of the file that defines it, and the line number within that file where the definition ends.��T�Typedef. Same format as ‘t’ above.��E�Export This is followed by the name of the export, and the line number in the input file where the export is defined��S�Static Same format as ‘E’ above.��#�Preprocessor definition. Followed by the name, the file index of its definition file, and the line number within that file��e�Exported function Same format as ‘E’ above��s�Static function. Same format as ‘S’ above��

The files generated are relatively small. For an input file of 229,826 bytes for instance, the generated .xrf file makes only  23,447 bytes.

Summary

lcc-win32 command line options.



Option�Meaning��-g�Generate the debugging information. Two types of debug information will be generated: COFF and CodeView (NB09).��-D�Define the symbol following the ‘D’. Example:

-DNODEBUG

The symbol NODEBUG is #defined. Note that there is NO space between the D and the symbol.��-U�Undefine the symbol following the ‘U’��-I�Add a path to the includes path, i.e. to the path the compiler follows to find the header files. Example:

-Ic:\project\headers

Note that there is NO space between the I and the following path.��-O�Optimize the output. This activates the peephole optimizer. Do not use this option with the -g option above.��-errout=�Append the warning/error messages to the indicated file. Example

errout=Myexe.err

This will append to Myexe.err all warnings and error messages��-eN�Set the maximum error count to N. Example:

-e25

The compiler will stop after 25 errors��-x�Generate browse information in an .xrf file��-E�Generate an intermediate file with the output of the preprocessor. The output file name will be deduced from the input file name, i.e. for a compilation of foo.c you will obtain foo.i��-S�Generate an assembly file. The output file name will be deduced from the input file name, i.e. for a compilation of foo.c you will obtain foo.asm��-z�Generates a file with the intermediate language of lcc. The name of the generated file will have a ‘.lil’ extension (lcc’s intermediate language)��file.asm�All files with an .asm extension will be supposed to be files written for lcc’s assembler. Beware: the syntax of lcc’s assembler is radically different from all standard assemblers.See the chapter about the assembler for more information.��

Registry use of lcc

Lcc creates the following key in the registry:

HKEY_LOCAL_MACHINE\SOFTWARE\lcc

This key contains the following subkeys:

lcc\General		General type of information.

lcc\Compiler	Compiler specific information

lcc\Wedit		For the IDE

lcc\lcclnk		For the linker

lcc\weditres	For the resource editor

lcc\debug		For the debugger





�

Lcc’s assembler



Overview

The tasks that are done in the assembler file ASM.C are mainly the following:

Obviously, assembler mnemonics generated by ‘genasm’ are translated into machine codes

For each compilation unit, an object file is built using the guidelines specified by Microsoft for the construction of Coff object files.

The debugging information generated by cv.c is stored in the debug sections of the object file.

The construction of the assembler was one of the first tasks in lcc-win32. Lcc used for its Dos version Borland’s Turbo assembler and a Dos extender to run on 32 bits. Since I wanted to build a self contained tool, an assembler was inevitable. There are a few public domain assembler that I looked upon. 



The first choice was obviously Gnu’s GAS (Gnu Assembler). I started looking at it, trying to see how I could take it away from their ‘BFD’ (Binary File Descriptor) stuff, but I found the task so enormous, that I gave up. It was impossible to see how the assembly process was being done in an enormous mass of bloated code. GAS is ‘machine’ independent. What this means for an assembler, is not at all clear to me. In any case, each functionality of the program is redirected through function tables that dispatch to the right machine dependent section of it.

This is maybe very clever, but if you want to follow the actions of the program... well forget it. You are confronted to

	(* TableOfFunctions[TableOfIndirections].fn)(arg1,arg2);

Then I examined different assemblers in the public domain. The best that I found was the version of ‘emx’ for the OS2 system. It was a small (compared to GAS) program, the source seemed clean and usable. The problem was, obviously, that it generated OMF format files for OS2. This wasn’t so bad. I extracted all the section of the program that generated the 386 machine codes from it, and gave an overall ‘simplification’ pass over it. Actually the only thing that rests now from the original program are the tables of machine instructions and the algorithm for parsing instructions. Still, I am indebted to Eberhardt Mattes for publishing his program.



In a patient work that lasted a few months, I added the code needed to handle the fixups instructions for Win32; the code needed to build the object file, and the building of the different sections.

The format of the x86 instructions



Depending on the instruction, the 6x86 CPU instructions follow the general instruction format shown in the schema below. These instructions vary in length and can start at any byte address.

An instruction consists of one or more bytes that can include:

prefix byte(s),

at least oneopcode byte(s)

mod r/m byte

s-i-b byte

address displacement byte(s)

immediatedata byte(s).

An instruction can be as short as one byte and as long as 15 bytes.



� INCORPORER Word.Picture.6  ����

Following this schema, the core of the assembler, the function Asm386Instruction first parses the optional instruction prefix, and the mnemonics for the operation (the opcode field).



If the operation is a repeated string operation (movsb, or any such) there are obviously not any arguments to parse since the arguments (the registers ESI, and EDI for source and destination) are implicit in the instruction. If not, the assembler parses the arguments of the instructions. 



Since I started with the machine code tables of lcc for the linux system, I kept their non-compatible assembler syntax, that was introduced by gcc: instead of putting the destination first, and then the source, as all x86 assemblers do, following a convention introduced by Intel, gcc decided to do the inverse: they write the source first, and then the destination. Since in the lynux system, gcc is the (only) compiler, the instruction tables followed gcc’s syntax. I decided not to change this, even if that decision provoked later several problems in the disassembler that the debugger uses, where I try to hide from the user that non-standard syntax.



The parsing of the instruction’s arguments is done in the i386Operand routine. There the different forms for addressing are translated into decorations of the global ‘i’, for the current instruction. Those decorations are used later by the calling function ‘Asm386Instruction’ to emit the instruction bits.



When the (optional) arguments are parsed, Asm386Instruction makes several test for special situations. One of them is, for instance, the test for the INT 3 instruction that is reserved to break into the debugger. We will see in the debugger chapter why this instruction MUST be of only 1 byte length.



This tests over, it continues with the outputting of the instruction: jumps are written first, followed by the other instructions. I left in the code, the tests for all instructions, even if lcc will never emit them. Those instructions (like lcall or ljmp) could be useful in another context later on for others that would like to build another tool.



Here are some examples for instructions, and the binary code generated for them.



1. Move a memory location into a register



	movl	_Global,%esi			8b 35 00 00 00 00

						8b = 10001011		(139 decimal)

						35 = 00 110 101	(53 decimal)



The opcode for the move instruction is 8b. Then we have the mod/rm byte. This byte contains three fields: the mod field, the reg field and the r/m field.

The mod field are the first two bits of the modr/m byte. In this example they are 00.

The reg field are the next three bits. The have the value 110 (binary) specifying register number 6 : esi. 

The r/m field combines with the mod field to form 32 possible values: 8 registers and 24 addressing modes.  In our example the value is 00 101, i.e. a 32 bits displacement, the offset of our ‘_Global’ within the data segment. If we change the value of the register to edi (i.e. we write 

	movl	_Global,%edi			8b 3d 00 00 00 00



the binary sequence changes only slightly: only the modr/m byte changes.

							3d = 00 111 101

Our mod+r/m field rest the same of course, since we are still accessing the same ‘_Global’. Only the register number changes to 7 (111 binary) meaning register edi.



An what about those 4 bytes of zeroes?

Well, here the assembler realizes that this is a memory access to a symbol. The real address will only be known to the linker. The assembler limits itself to emitting the 4 zeroes as a place holder, and emits a ‘relocation record’ in the object file, i.e. in the today fashionable ‘internet’ way:



FROM: lcc

TO: linker

SUBJECT: Relocation at offset 2645



Dear linker:



Would you mind putting here the effective address of the _Global variable? 

The ‘_Global’ symbol is the 354th in the symbol table. Please do a DIR32NB reloc since I have filled the field with zeroes.



Thanks a lot’



We will see the format of the relocation instructions below.



Emitting correctly those relocations was one of the tough tasks of building that assembler. An incorrect relocation record would destroy the code somewhere else, because the linker would patch the wrong location! This could make the program crash, or just would be invisible, if the program didn’t access that part of the code...



I will explain the relocation records more fully below. Let’s come back to our instruction encoding chores.



A more sophisticated example is:



	movl		%eax,(%esi,%edi,1)		89 04 3e



This means that the contents of eax will be stored at the table where the base is pointed to by edi, at the index indicated by esi, scaled 1.�



Here we are introduced to the ‘sib’ byte mentioned above.



We have:

					89		opcode

					00 000 100	modr/m byte

					00 111 110	sib byte



In this byte we have three bit fields:

1. The SS field or scale field are the two most significant bits of the byte. In this case is zero, meaning a scale of 2 to the zeroeth power = 1.

2. Then (bits 5 4 and 3) we have the index field (111) meaning register esi for the index.

3. Then we have 110, the base field, meaning the edi register for the base.



Fragments

Since the assembler makes only one pass over its input, we are confronted with the problem that the exact size of some instructions is not known. For instance when it sees:

	jmp	_$L2

	.

	.

	.

_$L2:



The position of the ‘_$L2’ label is not known. Now, we do not know if we can generate a jmp instruction with a byte displacement or with a 4 byte displacement, until we find the _$L2 label. We could solve this by just generating always a 4 byte displacement with it, but this would be really wasteful of RAM. The solution Eberhard Mattes had in its program, is to use a ‘Fragment’ data structure, that can grow if needed. I maintained that of course, even if the code is very difficult to follow due to a ‘macrology’ a bit confusing.



The format of object files



Object files contain not only code bytes. They contain the initialized data of the module, the size of the non-initialized data (bss),information for debugger, and maybe some other stuff. This has to be organized in a standard way so that utilities are interoperable. 



In a radical departure from the Windows 3.1 days, Microsoft decide to follow the already existing COFF standard. Before Win32, Microsoft used the OMF (Object Module Format) file format, that was developed by them and IBM. for the MS-DOS system. IBM stayed within the OMF format for OS2, and extended it for accomodating larger fields since OS2 is a 32 bit OS too. Microsoft decided otherwise, and introduced for their new system the Unix COFF standard. Actually, this is not a forced decision. In the first versions of the Borland compilers, the object format produced was still OMF, and only the linker was changed to produce a COFF executable.



Since I hadn’t written the linker anyway, I needed, to test my code, a linker so I hadn’t any choice but to use COFF from the start.



Object files, within the Coff� system, have the following structure:



A ‘section’ header, indicating where in the file is stored each section, its length and other stuff like its characteristics.

The different sections generated by lcc-win32 are:

The .text section that doesn’t contain any text as you would suspect, but contains the machine codes for the compilation unit that is stored in this object file.

A .data section containing the initialized data for the file. In this section go all the statements like:

int startingPos = 45987;

A .bss section, containing the non-initialized data. In this section go statements like

int Table[645];

A .debug section containing the debugging information

Other special sections

3. A Symbol Table, describing the symbols contained in the compilation unit.

4. The contents of the different sections.



Relocations



Each section can have ‘relocations’ instructions. This instructions appear only in object files.

They specify how the section data should be modified when placed in the image file and subsequently loaded into memory. They are fixed-length records and each element of the array has the following format:



Position and size�Meaning��0, 4 bytes�The address of the item to which the relocation should be applied. This is an offset from the beginning of the section, plus the starting address of the section. ��4, 4 bytes�The index in the symbol table of the object file that refers to the symbol that is being relocated. In our example the symbol ‘MyTable’��8 2�The type of relocation being performed. There are several relocations types possible. I describe later which ones lcc-win32 uses.��

Basically, the linker should build the executable from the different modules. When it does this, it will mix all the .text sections in a single .text section in the executable file. This would be impossible, if all references to offsets weren’t described in each object file in a relative fashion.

For each symbolic reference that ‘genasm’ emits the assembler generates the code for the instruction and leaves a zero in the object file. This position is recorded by the assembler for building the relocations at the end of each object file.



We have then records of this type:



Offset�Symbol table index�Type of relocation��2978�576�7��

The offset is the start of the instruction plus the start of the address part of the instruction, 2 bytes further up than the start of the instruction itself.

There is nothing special with the symbol table index. It is just what it name says: an index.

The type of relocation in this case is 7, i.e. a direct 32 bit relocation relative to the base of the section.



Other type of relocation arises when there is an instruction like:

	Mnemonic			Code

	call _strcpy		e8 00 00 00 00



The address of the ‘strcpy’ function is not known at assembly time. It will be known to the linker only. The assembler just generates the code and the following relocation instruction:



Offset�Symbol table index�Type of relocation��4987

The offset of the first zero within this section�978

Where in the symbol table is the _strcpy symbol�16

PC relative relocation��

All calls instruction generated by lcc are Program Counter relative offsets. This relocation instructs the linker to calculate how far away is the ‘strcpy’ function from that position in the section, and put that difference into the 4 bytes filled in with zeroes.



An optimization here is obviously possible: When the function being called is in the same module, the offset to that function is fully known to the assembler, and we can just put it in there and erase any relocation instructions, since both addresses are known.�



Pseudo instructions

The assembler receives directives from the compiler for reserving space (.space directive) for changing the current section or other chores: setting the name of the current file, building initialized data tables (.long or .byte instructions) This instructions are fairly straightforward, and they present no special difficulty.



Further work

The assembler uses up more than 13-15% of the total compilation time with no optimizations. This could be greatly reduced if lburg generated a table of opcodes instead of just ascii mnemonics.



Another big problem is the assembler syntax, inherited from the machine description for the LINUX system. It is utterly incompatible with all other assembler syntax, and it should be eliminated, in my opinion. But rewriting the assembler’s parser is a work that would eat me months of development...



The debug section



When I started this project, two alternatives for debug information format were available: Using the ‘stabs’ format of gcc, or using the CodeView (Microsoft’s debugger) format. After reading the specifications of both formats I decided to use Microsoft’s one. This decision was almost forced, because at that time, gcc (and gdb) did not run very well in the Win32 environment. The big advantage of using Microsoft’s one, is that the code generated would be compatible with all Microsoft’s tools, including their debugger. I could test if I was generating the right thing by using debugged tools like Microsoft’s linker, and I could debug the first programs using their debugger. If I had choosen gcc’s format, I would have been confronted to the herculean task of not seeing if I was generating correctly the code until the debugger was finished!



The Coff system has defined a very primitive type/symbol information. Lcc’s debugger uses some of this information, but it has only a marginal role.



To implement Microsoft’s debug information I wrote ‘cv.c’, that is called by lcc when generating code if the ‘debug’ global flag is set. (the variable ‘glevel’). In the file ‘dag.c’ I added at each block’s begin, a call to ‘GenBlockInfo’ to generate debug information for all variables that are used within the current block.



Besides this, I modified the functions ‘stabsym’ and ‘stabtype’ to generate debug information in the new format in the file ‘win32.c’.



The format of the debug information

This format is described in the Microsofts documents’CodeView Symbolic Debug information Specification 3.1. Besides, in an effort to promote standards for its X86 architecture,Intel Corp. has started a project where the information concerning the debug specification can be found.



Within lcc, I generate symbolic (.debug$S) and type (.debug$T) information. This will allow the debugger to make sense of the addresses and instructions found during program execution and allow it to present the information in a meaningful way to the user. Basically it will allow to interpret the data, to know the symbolic names that were used in the user’s program, and to position itself in the source code files.



Symbols

The ‘Symbols’ records are variable length records that contain the following fields:

Length (2 bytes). Specifies the length of the record, excluding the 2 bytes of the length field.

Type of the symbol (2 bytes)

Data specific to each symbol.



The Type field is either a user defined type (with a value bigger than 4096) or a primitive type (like ‘integer’ for instance) that is predefined by Microsoft. The predefined types are very rich, and lcc uses only a small subset of them: The ‘Cobol’ part of the specifications are obviously ignored, as are the symbolic information for Pascal or C++ types.



Value�Data�Description��0x200 BP Relative 16:32�The offset of the symbol with the stack frame (4 bytes), the type (2 bytes), and its name.�All local variables, of a procedure.��0x201 Local Data�Offset within the section, the section number, and the name of the symbol�Static variables of the module��0x202 Global Data�Offset within the section, the section number and the name of the symbol�Global public symbols of the module��0x204 Local Procedure start�Length in bytes of the procedure’s code

Offset in bytes from the procedure start to the point within the procedure wherer the stack frame has been set up

In a similar fashion, the offset to the last byte before the current stack frame becomes invalid.�Local procedure��0x205 Global procedure start�Format identical to the Local procedure format.�Global procedure description.��0x207 Block start�Length of the scope that this block defines

Name of the block�Used to define procedure scopes.��

All names are written with the length of the name in the first byte, followed by the bytes of the name.



Simple Types

The format for the type information is similar to the symbols information. It consists of a 2 byte length, followed by a ‘Type string’ as described in Microsoft’s terminology. This type string is a series of leaf structures that contain a 2 byte type, followed by additional data



Value�Data�Description��0x2 Pointer�Attributes of the pointer (2 bytes)

Type of the object pointed to (2 bytes)�All pointers in the code generated by lcc are 32 bit flat model pointers��0x3 Simple Array�The type of the object that forms the array. This is a 2 byte type index.

The type of the index that can be used to scan the array. This is always an integer in C.

The length of the array in bytes

The name of the array�This record will be genarated for simple tables like:

int Table[345];��0x6 Unions�The count of fields in the union

An index into the list of types for each member, as in the structures

Size

Name���0x5 Structures�The count of fields in the structure

An index into the list of fields

Size

Name�Describes structures. Most fields are not used, since the same record is used to specify classes.��0x7 Enumeration�Number of enumerates (2 bytes)

Type of each.

Name�Lcc always will put ‘integer’ in the type field.��

Types referenced from the ‘types’ record

This records encode for complex lists like the lists of arguments of a procedure or the list of fields in a structure.



Lcc uses only two record types:



0x201 Argument list

�

0x204 Field list



�



A field list contains the descriptors of the fields of a structure, class, union, or enumeration. The field list is composed of zero or more subfields. To complicate things further, because of the requirement for natural alignment, there may be padding between elements of the field list. 



As a program walks down the field list, the address of the next subfield is calculated by adding the length of the previous field to the address of the previous field. The byte at the new address is examined and if it is greater than 0xf0, the low four bits are extracted and added to the address to find the address of the next subfield. These padding fields are not included in the count field of the class, structure, union, or enumeration type records. If the field list is broken into two or more pieces by the compiler, then the last field of each piece is an LF_INDEX with the type being the index of the continuation record. The LF_INDEX and LF_PADx fields of the field list are not included in field list count specified in the class, structure, union, or enumeration record. See Section 3.5

for field list elements.



�The peephole optimizer�

1. Motivation

Lcc generates very efficient code for each instruction taken separatedly. The problem is, as Fraser and Hanson remark at the end of their book, that «lcc’s instruction selection is optimal for each tree in isolation, but the boundaries between the code for adjacent trees may be suboptimal. Lcc would benefit from a final peephole optimization pass to clean up such problems»



2. Implementation



I started working in this, with the idea of a very crude pattern matcher, just to avoid some obvious nonsense instructions. I was worried by the spurious ‘movl %edi%edi’ that sometimes appeared in the generated code. That bug is since a long time corrected, but the design of the optimizer bears still that mark. I haven’t redesigned it since I started it. It just grew and grew and grew... 



In retrospect it could be said that a little more effort in the design of the program would have saved lot of work later, but I do not think that is the case. This ‘keep it simple’ approach, allowed me to start immediately seeing the problems involved in assembly optimization, without having to spend a lot of time building complex data structures (and debugging them...)



The basic idea is to consider a ‘basic block’, i.e. a piece of code that contains jumps out of it, but not into it. Since lcc always generates jumps to labels I decided to use labels as a guide: a basic block then, is all code contained between two labels.



I built a scanner for digesting the flow of assembler instructions emitted by ‘genasm’, and to save the information it gathered in data structures. Here again, I just used a ‘Flags’ field with whatever it seemed important to keep: if its a ‘move’ instruction, or if the source is a register, or the addressing mode, etc etc.



Once all information has been stored in the ‘Instruction’ data structure, the main work could begin. I built a table of the contents of each register, to keep track of the state of the machine as it executes one instruction after the other. In this table I just stored tha text representations of the data that was currently in each register. Whenever I see a ‘load’ instruction, I scan that table to see if the data is already in a register and if it is, the instruction can be deleted.



The main aim of the optimizer is to delete instructions. I keep thinking that there is nothing that executes faster than a deleted instruction... besides other side-effects that make code-size a big win in optimizations: if your program is smaller, it will fit easier in the cache of the processor, it will take less time to load, and will make for less page faults when executing in a crowded machine.



I followed following rules:

I store the content of a register in the ‘State’ table, when the register is written to memory only, not when it is loaded. This is very conservative, but safer. I miss all the optimizations that could be done if I kept track of the value being ‘moved’ from one register to another.

I update the state of all registers which are invalidated explicitely or implicitely by the instruction. Specifically:

A ‘call’ instruction invalidates EAX, ECX, EDX.The others, EBX, ESI, and EDI are supposed to be preserved at all times.

A ‘call’ instruction invalidates all registers that contain references to global variables. The function called could modify those variables, so I invalidate all references to global memory.

I keep track of all instructions that implicitly use a register: for instance the ‘rep movsb’ increments ESI and EDI, so their contents are undefined at the end of the instruction.

To avoid the problem of the ‘aliases’, each LEA (load effective address) instruction invalidates all the registers. The problem is that when this instruction is executed, an alias for a memory location is built. If there was a register caching the value contained in that memory location, the register could be wrong after several operations. Rather than take any risk, I just destroy all state stored by the optimizer.



3. Patterns

Besides trying to eliminate redundant loads, the optimizer tries to substitute sequences of long instructions with shorter and faster ones. The list of patterns that I have built in this year is long (more than 30) and very specific to the code generated by lcc. I have never had in mind the idea of building a general purpose optimizer, that could optimize ANY piece of code. I just built a specific one, tailored to lcc’s output. Because of this, sequences of replacements that could be of interest in a general purpose peephole optimizer are not taken into consideration because lcc never generates them.



3.1 Cross -loads

mov	src, dst

mov	dst,src

For instance

movl	%edi,-4(%ebp) ; store a local variable

movl	-4(%ebp),%edi	; delete this one!

Preconditions: None. I can’t imagine a situation where this is not valid.



3.2 Eliminate unnecessary moves before a push

Instead of moving a memory location to a register for pushing it later, push that memory location directly.

mov	-8(%ebp),%edi

pushl	%edi



becomes

pushl	-8(%ebp)

Preconditions: The value in %edi shouldn’t be used later on. Sometimes lcc (or the optimizer itself) will use that value in another series of pushes. This optimization should be avoided in those cases.



3.3 Avoiding unnecessary intermediate registers

3.3.1 Specially with bytes moves, lcc generates a sequence of instructions like this:

movl %ax,%bx

movb %bl,-1(%ebp)

This can be safely replaced with:

movl %al,-1(%ebp)

Preconditions: The value in bl shouldn’t be used in later instructions. Actually, lcc never uses it.

Other variants of this same problem are sequences like this:

3.3.2

movl -24(%ebp),%esi

movl %si,%bx

movl %bl,-1(%ebp)



That can be safely replaced with

movl -24(%ebp),%ebx

movl %bl,-1(%ebp)

sparing the contents of esi, that could lead to other improvements.

Preconditions: None

3.3.3

This long sequence:

movl -16(%ebp),%esi

movl %si,%bx

movzbl %bl,%eax

movb %al(,%edi)

can be replaced with:

movl -16(%ebp),%ebx

movb %bl(,%edi)

This sequence arises when generating code for the ‘C’ statement:

	p[0] = (unsigned char)c;

Where  the variable ‘c’ is an unsigned long, and p[0] is a ‘unsigned char’ variable.

Preconditions: None.

3.3.4

Still another sequence is:

movl -4(%ebp),%esi

cmpl $45,%esi

That can be safely replaced with:

cmpl $45,-4(%ebp)

Preconditions: The value in %esi shouldn’t be used later.



4 Eliminate constants if possible.

Instead of

movl	$0,%eax			b800000000

generate

xor	%eax,%eax				31c0

which is much shorter: 5 bytes vs. 2 bytes.



The same with some additions/substractions:

addl	$-1,%eax			83c0ff

can be replaced with

decl	%eax				48

3.5. Use the ‘new’ 486 instructions.



This instructions were introduced by Intel for the 486 or higher processors. Since lcc-win32 will surely run in a 486 or higher, it is safe to assume this can be done. In the documentation it is stated explicitely that lcc will not run in a 386 or without the math coprocessor...



Instead of the long sequence:

mov mem,reg1		load value

mov reg1,reg2		save old value in reg2

inc reg1			add offset

mov reg1,mem		store updated value

generate the much shorter

mov		$1,reg2

xadd	reg2,mem

This corresponds to the much used ‘C’ idiom:

	unsigned char *p;



	*p++  = ‘c’;

The old value of the memory locations is loaded into the ‘reg2’ register, and the contents of the memory location are incremented by the value in ‘reg2. This allows us to use the old value in reg2 to do the assignment.

Preconditions: The value in reg1 shouldn’t be used. later. This is never the case fo the code generated by lcc, so this is a safe optimization.



3.6. Optimize sequences.



3.6.1 Sequence of calls with the corresponding stack adjustments.

In the sequence:

push	arg1

push	arg2

call	someProcedure

add		$8 , %esp



push 	arg1

push	arg2

call	OtherProc

add		$8,%esp

The additions to the stack can be concentrated in a single add to the stack. This saves space and time.

Preconditions: There shouldn’t be any intervening jumps or conditional jumps out of the sequence of instructions.



3.6.2 Initialization sequences

Instead of 

xor	%eax,%eax

movl	%eax,-4(%ebp)

xor	%eax,%eax

movl	%eax,_GlobalVar

We can do the ‘xor’ operation once and the just store the same value (zero) into the indicated memory locations.



3.7. Improving the block move instructions.



Lcc will generate a block move when one structure is assigned to another. The instruction generated will always be ‘movsb’ that moves only 1 byte per cycle. Since normally the size of the structure is an explicit constant, this can be improved by using the ‘movsl’ instruction, that moves 4 bytes per cycle, or, if the size of the structure is not a multiple of four, movsw that moves 2 bytes per cycle. It is this optimization that increases enormously the performance of the compiler in the Whetstone benchmark.



3.8. Inlining library functions.



Instead of generating:

push	128			6880000000 (5 bytes)

push	src			ff3500000000 (6 bytes)

push	dst			ff3500000000 (6 bytes)

call	_memcpy		e80000000000 (6 bytes)

add	$12,%esp			83c40c        (3 bytes)

							Total:                        26 bytes

we can generate:

movl	$128,%ecx		b980000000 (5 bytes)

movl	dst,%edi		8b3500000000 (6 bytes)

movl	src,%esi		8b3d00000000 (6 bytes)

rep		movsb		f3a4          (2 bytes)

					Total                         19 bytes

We save 7 bytes and generally, this should be faster than the call. If the memcpy function is very well implemented however, and the blocks to move are very big, it could be that this is not an optimization at all. Most calls to memcpy are for copies of several dozens or hundreds of bytes, where the cost of the call would be significant. This optimization is specially good for older processors (486). The new pentium processors have a very small ‘call’ cost, and the quality of the memcpy function is more predominant.

Preconditions: This destroys esi and edi. They are normally saved at function entry, but in some functions they are not. This happens if they weren’t used in the original, non-optimized version. If that is the case, their contents should be saved/restored in other registers. 



Another problem is the stack adjustment. If the call to memcpy was the last of a series of calls,  (see 3.6.1) and the final stack adjustment was done after the call to memcpy, the instruction for adjusting the stack should NOT be just erased. In an example:

	.

	.

	call	somefunc

	add	$8,%esp

	.

	.

	call	someother

	add	$24,%esp

	.

	.

	call	memcpy

	add	$44,%esp	(12 for the args of memcpy, and 32 for the others)



That last instruction should be changed to

	add	$32,%esp

instead of being just erased.

3.9 Avoiding clobbering when possible.

If an instruction will destroy a value in a register, and that value is later loaded from memory, try to substitute the destination register by another one (%ecx or %edx are good choices since lcc almost never uses them).

1. movl	-8(%ebp),%edi

2. movl	%edi,-16,%edi

3. movl	-4(%ebp),%edi	; destroys the value in %edi

4. incl	%edi

5. movl	%edi,--4(%ebp)

6. movl	-8(%ebp),%edi ; reloads %edi



We can avoid the redundant laod by substituting %ecx instead of %edi for the second load (instruction 3). This allows us to delete instruction 6.

Preconditions: The ‘spill’ register shouldn’t be used in other instructions further down, and it shouldn’t contain a value used later on, since this would nullify the gains.



4. Construction of the optimizer.



Debugging the peep-hole optimizer has been a constant chore for the last 9 months. Endless nights without sleep were lost chasing very difficult to find errors, that wouldn’t surface at first sight. In the ‘lucky’ scenario, the generated program just traps, you disassemble the offending code near the trap and you see where the optimizer went wrong. In the ‘unlucky’ scenario (by far ther most common) the program will just produce incorrect results sometimes. Not always. This kind of bugs have been very difficult to find. The problem is stating clearly the preconditions that are necessary for the optimization to work.



Besides this, I made the optimizer recurse in its own output, until there is no further optimizations. This augmented its effectiveness, but... what a nighmare. Many of the optimizations were not really completely debugged for the general case. When I used the optimizer in a recursive fashion, its input at the third or fourth pass would differ significantly from what lcc generates. Assumptions about the code generated by lcc were no longuer valid. But in retrospect, I think that helped to produce a more general tool.



5 Speed considerations

The slowing down of the compilation time due to the optimizer is barely noticeable. Compilation remains an absolutely I/O bound process, and since the optimizer takes a memory buffer that is intended for the assembler, changes it, and passes it to the assembler, all in core, the difference when compiling a big program is not significant. Besides a compilation time of 8 seconds goes down to 2 seconds for the second time, since Windows caches the disk systematically. It is very difficult to see which part in that huge difference is due to the optimizer.



6. Results:

In general, the gains in space oscillate between 20 and 30 percent, and the speed improvement can go as high as 50 percent for the Whetstone benchmark. Since that benchmark is very sensible to block-move operations, this huge improvement is not significative of the overall improvement you can expect from this optimizer.



7. Description of the code

The only interface with the rest of lcc is the function ‘ChangeBlock’. at the end of the source file ‘optim.c’. This function receives a block of assembler instructions from ‘SendToOptimizer’, a function in ‘output.c’.



The optimizer scans the assembly code in the function ‘FindEndBlock’, that searches for an ending label within the assembler instructions. The optimization proper is done in ‘OptimizeBlock’, that calls ‘FindStateChanges’ for each assembler instruction. ‘OptimizeBlock’ does the stack adjusting optimization described in 3.6.1.



8 Further work

The next step is of course to build the graph of the program and do tail-merging. I hope I find the resources to carry on the work by Fraser, (‘Analyzing and Compressing assembly code: C. W. Fraser ACM Sigplan 84) This work would mean that huge programs could be compressed by a factor of 50% or more.

�

The high level optimizer

Even if the peephole optimizer allows some improvement of the code generated by lcc, it is surely not enough. Impressive speed/code size gains can be only obtained by modifying the structure of the register allocation, using more evenly the available registers.



The main directions of the improvements done for the second public release of lcc-win32 are:

Improving the machine description, the basis of the tree labeller.

Introducing automatic variable caching in registers.

Improving the code generated for common C idioms

Improving floating point performance by avoiding unnecessary copies of data from/into the floating point unit.



Improving the machine description

The x86 is a CISC architecture. Thus, for generating good code for it, it is necessary to take into account all addressing modes and data types supported natively by the machine. The original version of the machine description, as published by Chris Fraser and Dave Hanson, consisted of approximately 195 rules. I have increased this to approx 350, taking into account the byte and word addressing modes everywhere that is possible. This eliminates many unnecessary moves to/from memory and reduces code size, improving speed. As an example of this kinds of improvements consider this rule:



stmt: EQI(CVUI(BANDU(CVIU(CVUI(CVCU(INDIRC(mr)))),con)),zero)



This sequence of instructions of lcc’s virtual machine arise when you use the innocent looking idiom in C:

	if (isdigit(c))



This sequence of statements in lcc’s virtual machine operators was translated using the standard backend into the following sequence of operations:

        movzbl  -1(%ebp),%edi

        movzbl  __ctype+1(,%edi),%edi

        andl    $4,%edi

        cmpl    $0,%edi

        je      _$2



Using the new machine description, this entire sequence of operations will be collapsed into:

        movzbl  __ctype+1(,%edi),%edi

        testb   $4,%edi

        je      _$2

Note that we save two 4 bytes constants (4 and zero), that are replaced by a one byte constant, since the type of the operation is now byte (testb). This allows to use directly the machine instruction, instead of doing the conversions that are in the end not needed at all.



Most of the new rules added are just an attempt to avoid any unnecessary conversions, and use directly the x86 addressing modes.



Another important issue was that several machine instructions, specially in the floating point instructions, were missing. I added the reverse divide/substract, and all operations that allow the floating point unit to directly address 16 bit data, avoiding (again) unnecessary conversions.



Problems caused by the larger machine description.

The proliferation of longuer rules produces a tree labeller that has to make more tests to find the optimum solution for the given tree.  To easy somewhat the impact of the new rules:

I have modified lburg, the program that generates the tree labeller from the machine description, to generate better code by avoiding unnecessary additions of zero, putting very frequently accessed structure fields in local variables, and other modifications that speed up the labeller.

I have keeped the standard back-end for use when the compiler is not called with the optimize option (-O). This faster backend keeps the same compilation speed as lcc had, when the user is not interested in code optimizations but in compile speed.�

Many of the optimizations that the peephole optimizer did in a very time-consuming way, have been moved to the tree labeller, saving much time in the optimization process, and improving the maintenability of the peephole code that had grown to a huge size.

Improving register usage

The basic problem with lcc, was that 90% of the instructions just used two registers: ESI and EDI. As an example, consider the file ‘edit6.c’ that is part of the IDE (Wedit). It has approx 10 000 lines: This is the output of the utility  ‘regusage’



EAX    821

EBX    158

ECX      9

EDX     20

EDI   7373

ESI   2086

Total: 10467 



We see here that  9459 instructions used ESI or EDI, i.e. mor than 90%! The other registers are almost never used: ECX is used sometimes in modulo operations (9 instructions out of 10467!) EDX holds the result of the modulo operation (20 instructions..), and the usage of the other registers is minimal. This means that the machine is used to 25-30% of its real capacity, making a very slow code.



The reults using the -O option look now very different:

EAX   1005

EBX    791

ECX   1153

EDX   3431

EDI   1730

ESI   1111

Total: 9221

The first thing that is apparent is that the number of instructions emitted has been reduced by 10%. This is because many unneeded instructions (conversions from char/shorts to int) were aliminated by the new machine description.



The second important fact is that the program is using the registers much more evenly, specially ‘cheap’ ones like EDX, ECX, that need not to be saved when they are used.



Register allocation now uses automatic register variables. Before code generation, the optimizer looks for the best three variables to put into EBX,ESI,and EDI. To do that, it analyzes the hints about the code in the function left by the parser and the node construction function ‘labelnodes’ (in dag.c) to determine how many registers can be allocated. The code generator and register allocator works now with only three free registers in some situations. 



Spills have not increased though, a big fear I had when embarking into the construction of the optimizer. This is due in part to the elimination of unnecessary conversions, that now save a register when one was being wasted before.



Since the x86 instruction set has many ‘special features’, they have to be considered when allocating registers. Big trouble are those instructions that accept their inputs in fixed registers, and clobber them: I mean for instance the block move instructions, that destroy ESI and EDI, and use up ECX to hold the repeat count. For the time being the compiler will NOT optimize any function that contains this instructions, to avoid generating wrong code in some cases. Since this instructions are not very frequent, this doesn’t hamper the optimization process as a whole.



The rules for choosing the best register variables are as follows:

If the function calls no other functions (leaf function) and has no block move or division instructions, EBX, ESI and EDI are free for register variables.

If the function calls another function, but has no calls within the argument list to a function, no division/modulo and no block moves, EBX, and ESI can be used for register variables

If the function has no block moves EBX is used for a register variable.

Else... well no register variables at all.



This rules seem very arbitrary, and they surely are. The problems lies in the function ‘clobber’ and in general in the register allocator of lcc that doesn’t work when those instructions are encountered. I have spent countless nights trying to find out a solution, but I had to give up. So I examine every statement trying to minimize the trouble that those operations cause.



Before the call to gencode() the high level optimizer looks at the information passed to it by the parser, and determines which registers can be used for register variables. Then it will sort the locals of the function (arguments and local variables), and allocate the best ones to the available registers.



Another small optimization that is done at that stage of compilation is the elimination of any unneeded labels. Since the peephole optimizer uses the labels as a mark for blocks to optimize, it is essential that it receives blocks as large as possible. Unneeded labels would split unnecessarily a block, disminishing the usefulness of the peephole optimizer.



After ‘gencode’ is done, if the function is a leaf function, and some cheap registers weren’t used, they will be exchanged with the ‘expensive’ registers, like EBX,ESI or EDI. Those registers are expensive since they have to be saved/restored at function entry/exit. This can be done safely if the function is a leaf function only, because having a register variable in EAX would be very expensive to maintain: at each call that register variable would have to be saved!



Improving floating point performance



Analyzing why the performance of lcc in floating point was so mediocre, I discovered that the compiler was considering each floating point number as a common sub-expression, i.e. an expression that should be sasved into a register. This is not a bad idea, since the loading of a floating point number can be costly. Problem is, lcc doesn’t use the floating point registers in the x86 architecture due to the organization of those registers as a stack. This is surely a wise decision from the part of the authors of lcc, since other compilers do the same, probably for the same reasons.



The code for the common sub-expressions was not eliminated, however. This means that this ‘cse’ will be spilled to memory, since there are no floating point registers. Consequence: for every floating point operation, lcc will duplicate the floating point number in memory, and load it from there. This slows down the code enormously.



The remedy for this was very simple: I eliminated the cse, and the floating point code generated by lcc is now comparable with the code emitted by professional compilers.



Another improvement of floating point has been obtained by eliminating unnecessary conversions, since the floating point unit can use directly 16 bit and 32 bit integers.



Front end modifications

Several modifications were necessary to make the optimizer work. First, since the x86 never used any register variable, I started using code that wasn’t tested before in this configuration. Second, I eliminated all the unnecessary conversions from, for instance, unsigned integer to pointer. This conversions are completely vacuous in all targets of lcc, so I just filtered them in the corresponding ‘case’ of the function ‘listnodes’ of dag.c.



Since the optimizer needs information about the instructions used in a function, I added some fields to the ‘Node’ structure to hold bits indicating whether this function has a blockmove instruction (ASGNB) somewhere, whether it uses division... etc etc. This allows the register allocator to make decisions about register usage/allocation.



Heavier modifications were needed in the register allocator of course. It has been modified to return EDX, ECX, EAX, ESI, and EDI in that order.



Another small modification is the improvementof the return instruction in the popular C idiom:

	if (!SomeFn())

		return FALSE;



I eliminated in this context an unnecessary assignment to a register, since if the function ‘SomeFn’ returns false, that same result can be returned without any further processing. This can happen of course only if the return type of the function is an integer.



Modifications to lburg

I added the special symbol ;; as a comment separator. This allows to comment those hairy rules in the machine description.

I have tried to eliminate all additions of zero. I didn’t suceed in eliminating them all, but most of them.

I factored out some common sub-expressions into local variables in the generated code. This speeds up the compilation time, since the labeller uses up 5-8% of the total compilation time (with no optimizations)

The modified sources of lburg are included with the sources of lcc-win32.

Other changes to the front end.

There is no need to convert enumerations into integers since enumerations are represented as integers. I added some code in stmt.c to eliminate this conversion when reading the arguments to a function.

The code for assigning registers in decl.c was moved to the optimizer.

The option «-z» was added to the options of lcc. It will generate a .lil (lcc’s intermediate language) file for perusing if you are interested in looking at this feature of lcc.

The file ‘enode.c’ was modified for accomodating the intrinsics interface. See the chapter about that below.

Quality control



The following programs have been compiled with lcc.



lcc			37.000 lines

lcc’s IDE (Wedit)	72.000 lines

lcclnk			 8.000 lines

weditres		31.000 lines

tst directory		 9.000 lines



Further work

This is the first try of a high level optimizer. Many optimizations are still possible of course, but this release represents a compromise between the ‘ideal’ optimizer, that would be ready in a year or so, and the state several months ago. 



Within the framework of the existing register allocator,and the existing structure of lcc, some improvements can be readily be done still:

The handling of the post-increment/decrement expressions forces the usage of two registers when only one is needed in 99% of the cases. This needs a change in several functions of the front end, and in dag.c. I have attempted that change several times, but I couldn’t find a stable configuration yet.

The handling of function call results uses up a register instead of using EAX directly. This needs some small changes in enode.c and expr.c, and in dag.c

The rules for assigning registers should be simplified, and the block-move / division operations should work without the contortions needed now. This will be one of the top priorities for the next months.

Now that variables are held in registers, this informations has to be written in the object file so that the debugger is aware of that. This hasn’t been done yet, so the debugger will not see those variables.

�The intrinsics interface

In the lcc discussion mailing list, we had a very heated debate last December about in-line assembly. I defended the point of view that in-line assembly is very useful, and can and should be used in any C program.



Now, several moons later, older and wiser, I think that the best thing would be to have the money of the cake and eat it too. The solution is to combine the efficiency of assembly language within a high level framework using the compiler to recognize pseudo functions, that will be inlined to its assembly instructions counterpart.



All the mmx calls are done this way.



The choice of each intrinsic is somewhat arbitrary. I didn’t want a full blown interface that would mean you program assembly language in ‘C’. I choose some instructions from the many this CISC machine offers, and I am open to suggestions from your part concerning instructions that you would like to add. This interface is realized in the file ‘intrinsic.c’, in the compiler sources.



For the documentation of the mmx functions see the Appendix 2



The intrinsics (non-mmx) recognized by lcc-win32 are:



Table � SEQ Tableau \* ARABE �1�: The intrinsics of lcc-win32

Name�Description��_rdtsc(void)�Returns a double containing the number of cycles that the machine has done since it was turned on. Since this counter is automatically incremented at each cycle,  to get a time in seconds you have to divide by the clock speed of your machine. For example if you divide the value by 166 x 1e6 you get the number of seconds elapsed for a 166MHZ machine.This intrinsic will use up some cycles for converting the 64 bit value into a floating point number, so there will be an overhead of at most 1000 cycles: at 200 MHZ this should be 5 millionths of a second...��_bswap(long)�returns the byte swapped long integer��_fsicncos(arg,cos *)�Returns sin(arg), and stores the cosinos in the address pointed by cos *.��_fldpi(void)�Returns the constant pi in floating point format��_fldl2e(void)�Returns the logarithm base 2 of e.��_fldlg2(void)�Returns the logarithm base 10 of ‘e’��_fldln2(void)�Returns the natural logarithm (base e) of 2.��_carry(void)�Returns the carry flag as an integer. This value is VERY volatile, since all calculations set/unset it. You shouldn’t assume that the value returned is the value of the last C instruction done, since the lcc’s optimizer could re-arrange the intructions��_fistp(arg)�This will return a long integer from the given double using the rounding mode that is in effect at the time of the call. Normally this should be rounding to nearest, since lcc-win32 never changes this setting. This allows for very fast rounding. It must be remembered that to satisfy the rules of ANSI C, lcc-win32 is forced to set the rounding to truncation, make the rounding, and then restore the original mode. This can be avoided by using this intrinsic function to round floating point data.

��_bsr(long)�Returns an integer with the index of the first non-zero bit in the given integer, starting with the most significand bit.��_bsf(long)�Returns an integer with the index of the first non-zero bit in the given integer starting with the least significant bit.��



�The linker

Motivation

When I had my assembler working, I could test it with Microsoft’s linker. For the first time I could compile Wedit’s source code with lcc and I could at last experience the thrill of looking at a program that was built with this first, embryonic system.



But I wanted a self-contained tool. It would be annoying to tell the user’s: well folks, you have to buy MSVC and use the LINK command. They would surely answer: ‘If I buy MSVC, I do not need your system at all...’



So I started working in a linker.



The tasks a linker has to do are the following:

Consolidate all sections from all its input files into a single section. This means that all .text sections should be thrown together in a single .text section, all .data sections should be consolidated in a single .data section and so on.

Build an executable with the sections it finds in the specified object files or in the libraries it searches according to Microsoft’s PE specifications.

Link all the debugging information consolidating the definitions repeated several times within the object files into a single .debug section, and build a debug directory using Microsoft’s NB09 specifications. This is done by Microsoft’s CVPACK utility. within the MSVC system.

If any of the input files is a resource file, convert it to COFF format and link it with the rest of the object files.

Build the table of imported functions from system/user dlls.

If the user demands a dll, build the .reloc and .edata sections, with the relocation data and the export data.

The format of the PE Executable.

� INCORPORER Word.Picture.6  ���

Figure 1. 

An executable file contains basically two things:

Image data

Instructions for the loader

Under Win32, Microsoft adopted the COFF format, that we have already reviewed in the chapter about the assembler. Executables follow this format, adding several sections that we will discuss in detail later. 

The ‘Dos stub’

The very first part of an executable is a ‘Dos stub’, i.e. a program that will just print out ‘This program cannot be run in Dos mode’ and exit. This is a constant part of the executable that the linker writes at the beginning of the exe file. More sophisticated linkers have an option to use another ‘stub’ dos executable, instead of the standard one. I have thought for a moment doing this, but later discarded it, since contradicts the KISS principle. Why complicate things?

The File header

Then follow the interesting parts. The file header, the ‘optional’ header (required for executable files), and the data for each section. Here is an example of the outpût of the dump utility for this header:

File Header

  Machine:                      014C (i386)

  Number of Sections:           5

  TimeDateStamp:                32FBD489  (Sat Feb 08 02:19:05 1997)

  PointerToSymbolTable:         00000000

  NumberOfSymbols:              00000000

  SizeOfOptionalHeader:         00E0

  Characteristics:              010F

    RELOCS_STRIPPED

    EXECUTABLE_IMAGE

    LINE_NUMS_STRIPPED

    LOCAL_SYMS_STRIPPED

    32BIT_MACHINE

This part is written by the linker at the end of the linking process, just before it exits. The reason is simple: the linker knows this information only when the whole file has been built, all symbols have been counted (and relocated) and the position of each item is known.

The ‘Optional’ Header

Here is an example for this header:



Optional Header

  Magic                              0x10b        267

  linker version                     1.01

  size of code                       0xE200       57856

  size of initialized data           0x1E00       7680

  size of uninitialized data         0x1000       4096

  entrypoint RVA                     0x113D       4413

  base of code                       0x1000       4096

  base of data                       0x10000      65536

  image base                         0x400000     4194304

  section align                      0x1000       4096

  file align                         0x200        512

  required OS version                1.00

  image version                      0.00

  subsystem version                  4.00

  Reserved1                          0x0

  size of image                      0x15000      86016

  size of headers                    0x400        1024

  checksum                           0x0

  Subsystem                          0x3 (Windows character

  DLL flags                          0x0

  stack reserve size                 0x100000     1048576

  stack commit size                  0x1000       4096

  heap reserve size                  0x100000     1048576

  heap commit size                   0x1000       4096

  loader flags                       0x0

  RVAs & sizes                       0x10



Data Directory

  EXPORT       rva: 0x0         size:        0

  IMPORT       rva: 0x14000     size:     1794

  RESOURCE     rva: 0x0         size:        0

  EXCEPTION    rva: 0x0         size:        0

  SECURITY     rva: 0x0         size:        0

  BASERELOC    rva: 0x0         size:        0

  DEBUG        rva: 0x11000     size:       84

  COPYRIGHT    rva: 0x0         size:        0

  GLOBALPTR    rva: 0x0         size:        0

  TLS          rva: 0x0         size:        0

  LOAD_CONFIG  rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  heap commit size                   0x1000       4096

  loader flags                       0x0

  RVAs & sizes                       0x10



Data Directory

  EXPORT       rva: 0x0         size:        0

  IMPORT       rva: 0x14000     size:     1794

  RESOURCE     rva: 0x0         size:        0

  EXCEPTION    rva: 0x0         size:        0

  SECURITY     rva: 0x0         size:        0

  BASERELOC    rva: 0x0         size:        0

  DEBUG        rva: 0x11000     size:       84

  COPYRIGHT    rva: 0x0         size:        0

  GLOBALPTR    rva: 0x0         size:        0

  TLS          rva: 0x0         size:        0

  LOAD_CONFIG  rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

  unused       rva: 0x0         size:        0

The different fields are:

‘Magic’: Just that, a number that HAS to be there to verify that this is indeed an executable file.

Linker version: Lcclnk sets this to its version, 1.2 now, 1.01 in the example shown.

Size of code: The total size of the .text section.

Size of initialized data: The total size of the .data section. When you write in a ‘C’ program a variable (not a local variable that is allocated in the stack) but a global/static variable that is initialized, the linker arranges so that it points to a portion of the .data section.

Size of uninitialized data: The size of the .bss section. Here points any variable that is just declared, without any initialization. This .bss section is not written to the file. The linker just declares it, so that the loader will reserve at this address a portion of memory that will be zero filled.

Entry point RVA: The Relative Virtual Address of the entry point. This is simply the offset in bytes of the entry point minus the base of the image. The loader NEEDS to know this, since it will pass control to this address once the program is loaded in memory. If, for any reason, the linker doesn’t know the address of the entry point, it will abort the link, since the generated executable will never run.

Base of Code: An offset from the image base, where the .text section is located. Normally this is 4K. I suppose that this is to make the very first page of memory absent, so that the system can catch any writes to NULL pointers. If this weren’t the case, you could read from a NULL pointer...

Base of Data: Where the data of the program begins. This can be, as this example shows, the starting address of the .bss section. It depends on the program.

Image base: An offset from the start of the virtual address space, where this program is being loaded.

Section align: The alignment for each section. Lcclnk uses a 4K alignment, but this wastes some precious RAM. A way of eliminating this wastage would be to cram several sections in one, so that the alignment is not needed. For instance, we could pack the .bss section at the end of the .data section, saving the alignment of the bss section. If I have time and resources, this is definitely a thing to do for a better version of the linker.

File align: The alignment choosen by lcclnk is too big. I should experiment with smaller alignments like 16 instead of 512, its value now.

Required OS version: All programs linked with lcclnk will run in the Win32 environment. I was not sure what to put in there, so I settled for a value of 1.0. I do not think that the loader cares a lot about this value, but this may change in the future.

Image version: This is a user defined value that defaults to 0.00. With the -version option of lcclnk, you can put a value in here.

Subsystem version: Again, I didn’t know what value put in here, so I settled for the same value as LINK: 4.0

Reserved1: Always zero.

Size of image. The sum of all sections.

Size of headers. Lcclnk will always put a 1024 in here.

Checksum: Lcclnk doesn’t support this value, because I haven’t found the algorithm needed. It should be in ImageHlp.dll, according to the documentation. Looking at the exports of that dll, you will find indeed a ‘CheckSumMappedFile’ function. Now, this is another thing that future releases will cover. In any case you need that checksum only of you are writing a device driver, or similar stuff. If you do it, just send me an e-mail and we will see how this works.

Subsystem: Lcclnk has a -subsystem option. The value you enter ends up in here. 

Dll Flags: The documentation marks this as ‘obsolete’ so I put always zero in there.

Stack Reserve size: The maximum size the stack can grow. Lcclnk sets here 1MB, what should be enough for the most demanding applications. There is no option for configuring this however.

Stack commit size: The amount of real RAM that the system will commit for you before the program begins to run. You can set this value with an option in lcclnk.

Heap reserve size: Same as Stack reserve.

Heap commit size: Same as Stack commit.

RVAs and size: This is a table of 10 positions, each with a relative virtual address and a size. Lcclnk uses the following:

EXPORT: The .edata (exports) section. This is needed for dlls only, and it is described further down.

IMPORT: The rva of the import table and its size. This is the same as the .idata, and consists of the names of the imported functions from other dlls. All programs have this table, because you will surely need to import from the C run time library or Kernel32 or other basic system dlls.

RESOURCE: If you have a windows program with resources you will use this entry.

DEBUG: The debug information address and size.

Standard sections



The linker builds the image based upon the data found in the object files it uses: each section of the object file will be assembled in a section of the executable file. All the .text (code) sections will build the final .text section of the executable, all .data sections are gathered together in a single .data section, etc.



This sounds simple but is not very easy to do. I spent a lot of time in the linker, trying to do things that are very easy said, but no so easily done. For instance, the linker just puts the different sections in the order of the object files given in the command line. Taking a concrete example, if you are linking ‘foo.obj’ and ‘bar.obj’, the text section of foo.obj will be taken first, and then the text section of the file ‘bar.obj’. But then we have to worry about alignment between different sections (I do not use any), and other complications like the fact that the startup object file must be first in the order, because it contains special sections for building the import libraries, etc etc.



The standard sections that lcclnk understands and uses are the following:

.text: The code of the program. This are sequences of bytes that the processor you are using ‘understands’ This bytes are interpreted by the processor as a series of instructions, executed, etc. All the executable and all computer processing comes down to this: a series of numbers that the processor executes in an absolutely stupid way. It has no ‘soul’ nor free will, nor nothing else but this never ending desire of doing what is being told to do!

.data Here come the initialized data items, i.e. data that is know to the program at program start.

.bss: Non initialized data. This is just RAM space reserved for future use by the program at the program start. This name ‘non-initialized’ data is a misnomer since this RAM will be cleared to zero by the program loader.

.idata: The imports table. This is a table constructed by the different ‘import libraries’ and several sections in the startup code, that tells the program loader which dll to search and which functions in that dll to link at load time.

.edata: The exports table. In the case of a dll, this tells the program loader which functions this dll exports.

.rdata. Several small information pieces about the executable, like the position of the Coff debug header, and other trivia. Not really necessary, and I am thinking that in a future version of the linker I could well just ignore it.

.reloc: Relocation information telling the program loader which sections to fix if the program can’t be loaded at its default load adress, the Image base value we discussed above.

The linking process (overview)

Roughly, the whole thing goes like this:

Process all command line options.

If any file in the command line has a .res extension, assume it is a resource file and convert it to an object file.

If any file has a .def extension process it as a .def file containing the names of the functions that will be exported from the dll being built.

Open all files given in the command line.

Read in all sections from all object files and calculate the size of each of the output sections. Each outputsection is just the sum of its component sections.

Store all symbols encountered when reading the objetct files into the global linker hash table.

Look for undefined symbols, and search in the libraries for them.

Perform the symbol table construction, relocate the line numbers and auxiliary entries.

Perform the relocations, writing out all relocated sections into the executable. At this step all symbols should have been read. If a relocation points to an undefined symbol we can’t go on.

At each relocation above save the position of the relocation for the building of the .reloc section if this is needed.

Link the code view debug info. This steps eliminates redundant definitions and compacts the debug info. If the file doesn’t contain CV debug info, the linker tries to figure up some of that information using the COFF symbol table info.

Write the headers (file headers, optional header, etc).

If the -x options was indicated, scan all global symbols to see that they are used at least once. Print a report.

If a mapfile was indicated, write the map of the executable generated.

We are done, close everything and get out of the way!



The linking process: detail

Parsing the command line

This is not very interesting. All command line options are listed at the end of this chapter.

The file name expansion is done at this stage. Here the type of the input file is deduced from the file name extension, i.e. .res files are handled different than normal object files.

Convert the resources to object files

Well, this is not like parsing the command line options. Definitely not. It took me more than two months to write the ‘cvtres’ utility, to convert resource files to Coff object files. Basically this builds two tables, one with a series of pointers and directory structure, and the other with the actual data I read from the resource file. This two tables are merged into a .rsrc section by the linker.

Parse the .def files

This isn’t specially exciting. I build a linked list of exports that are read from the .def file.

Of course, the usual problems have been detected after the first release... I hope I parse the .def files OK now. 

Open all files given in the command line

This needs a little reflection. As with the compilation process, the linking process is limited by I/O. It is essential that the linker reads the information from disk in the most efficient manner. Since I am not a disk guru, and besides I wouldn’t think that a linker should mess with the type of disk it is running in, I leave that to the operating system. Let’s face it: the operating system will have done a much better job of tuning its I/O than I could ever do. So I use this feature of Win32 called memory mapped files. This means that I use the swap file for all my input output, so that in fact the OS does all input output for me! This speeds enormously the linking process.



Read in all object files

Each object is scanned, and the symbol table of each object goes into the global linker symbol table. Basically there are within the C language only two types of scopes: local to the compilation unit (object file) and global to the whole project/executable. This is not a very sophisticated arrangement, and I have discussed within the lcc mailing group the possibility of introducing ‘name spaces’, i.e. spaces of scopes that could alleviate the problem of having all modules share all global names. For a variety of reasons my proposal was rejected, so we stick to C language conventions for the time being.



The contents of the text, data and bss section of each object file are added up to its containing section, so at the end of the process, we know exactly how many bytes will be in each section, and the position of each global symbol within its section.



A special treatment is done with the .bss section, since its contents are not read in anywhere: they are just implicetly defined by the sum of the .bss sections of all object files.



Relocate all symbols

The next thing to do is to go through all symbols, and decide whether they will go into the final symbol table or not. Many of them are discarded, since they are local symbols of each compilation unit. Global symbols need to be relocated, i.e. the ‘value’ of the symbol has to be set to its final address. This is easy now that the position of the section that contains the symbol is exactly known: we just go through them setting the value field to the right number.



Line numbers, in their COFF variant have to be relocated too, if they exist at all. This is the same as for the symbols. We know the starting virtual address of the section the line number records refer to, so its a matter of a few additions and substractions to be done with them.



Performing the relocations

Once that is done, we go through all object files performing the relocations as specified in the corresponding sections. We add, add and substract the image base, etc. At the same time that we do this, we record the position in the output file where the relocation is done, so that we can tell the program loader, that in the case that the image can’t be loaded at the calculated address, it should patch the address <here>.



If the -x option is specified in the linker’s command line, at each relocation lcclnk increments the symbol’s ‘usage’ field. After the link is done, all the symbols that aren’t used (i.e. an ‘usage’ field of zero) are printed out. This is not very sophisticated, since in the case of a symbol from the .text section (a function), it could be that is used implicitely by a relative call instruction, that doesn’t use any relocation. Lcc doesn’t generate a ‘call myfunction’, but a ‘call +587’, with 587 being the difference between the value of EIP at this point, and the position of the function to call, i.e. the function ‘myfunction’ would be 587 positions from the program counter (eip) relative to the beginning of the next instruction.



Linking the debug information

When you write a windows program, and you #include <windows.h>, all definitions that you use from it generate debug information. This means, when you link several modules that include windows.h, you will have several times the debug information for structures like LOGFONT, or whatever. This is wasteful of space. The linker should pack that information so that only one definition of the LOGFONT structure is linked in.



Besides doing that, the linker should build the information relative to the debug directory: start and size of each module that has contributed code/data to the link, and other information.



To support CodeView debug information, the linker:

Generates the header and "NB09" signature.

Packages the header with .debug$S and .debug$T sections from object files and synthetic (linker-generated) CV4 information, and creates a debug directory entry.

Generates the subsection directory containing a pointer to each known subsection, including subsections that are linker-generated.

Generates the sstModules subsection, which specifies the address and size of each module's contribution(s) to the image address space.

Generates the sstSegMap subsection, which specifies the address and size of each section in the image.

Generates the sstPublicSym subsection, which contains the name and address of all externally defined symbols. (A symbol may be represented both by .debug$S information and by an sstPublicSym entry.)



Well, all this is a rather difficult assignment. I hope lcclnk has fulfilled all of this, but it still may contain bugs (oh! sorry, « known problems »).



Summary: lcclnk command line options

The general format of a link command line is as follows:

lcclnk [options] object-files library-files



Default libraries:

The linker will default to the following import libraries:

LIBC.LIB 			A few C functions are in here.

KERNEL32.LIB 		Kernel function calls 

COMDLG32.LIB 		Common dialogs library 

USER32.LIB 			Windows 'user' functions 

GDI32.LIB 			GDI functions 

ADVAPI32.LIB 		More window functions 

COMCTL32.LIB 		Library for the common controls of Win32. 

CRTDLL.LIB 		Library for the 'C' runtime functions 

This libraries do not need to be specified in the command line. The linker will search them anyway.

To find the libraries, lcclnk uses the registry key:



HKEY_LOCAL_MACHINE\SOFTWARE\lcc\lcclnk\libpath



This is an ASCII_Z key, that contains the full path of the libraries directory. If the linker doesn't find this key, you will be prompted for it at the command line. If you enter a correct path, lcclnk will always use it later.



The name of the object file can be an expandable file specification. For instance: '*.obj'.



Options are introduced with the character '-' or the character '/'.

Example:

-map or /map

are identical options.



OPTIONS of the linker



-o <filename>

Sets the name of the output file to filename. Put a space between the  o and the name of the file.

Example:

lcclnk -o myexe.exe

If this option is absent, the name of the first file will be used.



-subsystem <subsystem>

Indicate the type of output file. subsystem can be one of:

1. console

2. windows

If you specify console, a console application is created. The standard input, standard error, and standard output are opened. When the program is started, Windows creates automatically a console window.

If you specify windows, a windowed application is created. No console window is created, and stdin, stdout, and stderr are NOT initialized.



-stack-commit <number>

The default stack reserves 1MB of stack space, and commits 4096 bytes of it. With this option you can commit more pages than only one (4096 bytes). This means that a slight improvement in execution speed can be attained with programs that use a lot of stack.

Example:

-stack-commit 27000



-reloc

This option instructs the linker to build a .reloc section. This section is a table of relocations to apply if the executable can't be loaded at its preferred load address. This option is necessary to run under Win32s.



 This option is automatically turned on for dlls.



-dll

This option indicates to the linker to produce a .dll instead of a .exe. The process of building a dll is very simple:

1. Compile the source(s) files for your dll as you compile normal sources.

2. Link the resulting object files using the option -dll and give to the linker the names of the functions exported  in a .def file you include in the link.

3. Produce an import library using the implib utility.



EXAMPLE

lcc mylib.c

lcclnk -dll mylib.obj mylib.def

implib mydll.dll



The format of the .def file is like this:

EXPORTS

	Function

	AnotherFunction

	YetAnotherFunction



You write the EXPORTS keyword, followed by the name of each function of the dll you want to export (i.e. to make visible for use in another executable) in a single line.



-map <filename>

This indicates the name of the mapfile. In the mapfile you will find the addresses of all symbols used in the link and the line number information, if available. The format for the line numbers is simple:  Address:line. The address is written in 8 characters prefixed by the '0x', and the line number is written in 4 characters in decimal. This option allows you to find out where in your program a fault occurred by reading the address from the dreaded dialog box that the system displays when a program crashes. 



 This option is not compatible with the -s option, i.e. if you ask to strip all symbols no line number information can be generated. 

When doing an executable with the -s option to ship to customers, it is better to do the link twice: One with the debugging information and a mapfile, and the other stripped. Do first the stripped, then the full one. The reason is that when both options -s and -map are specified, the linker writes a smaller link file without any line number information. If you do first the full link, and then the stripped, this smaller map file will overwrite the good one...



Example:

-map myexe.map



-s

This option indicates that the linker should strip all symbolic and debugging information from the executable. This means the executable can't be debugged with a debugger, but that its size will be considerably smaller. Besides, the linking speed is increased since the linker has less work to do. Use this option with debugged programs if you think those kind of things exists...



-version nn.nn

This option adds the version number to the executable. The numbers are the major version number and the minor version number. They are separated by a point character.



Example:

-version 3.8 or -version 99.01



-x

Perform an analysis of the symbols that are declared 'extern' but are never referenced in any other object in the link. There are two cases:

1. The symbol is in the .text section (code section). 

 Even if this symbol is not used in other modules, it can be used in the same module. The linker can't determine this (without disassembling the whole object file), but this can be easily checked by you: just declare the function 'static'. If it is not used, the compiler will issue a warning.



2. The symbol is in the .data or .bss section. 

This is a data item, and it is surely unused. Delete it from your source.



errout=<filename>

Write all warnings or errors to the indicated filename. No space between the equals sign and the name of the file please. 

Example:

 errout=link.err

�The import librarian

Import libraries

Import libraaries are just a series of ‘stubs’ that will satisfy the linker, but contain no code. They are very easy to write, since they are just an indirection through a function table.



When you call any function that is in a dll (all C functions, windows functions and any other functions the executable imports), you do NOT call directly the code in that function, but you call a ‘stub’ that consists of only one instruction:

	call	jmptable[10]



This ‘jmptable’ is the .idata section. It will be filled with the actual contents at load time, when the loader searches in the PATH where the dll in question is, and determines the addresses that need to be written to the table.



The task of the ‘import’ utility is just to generate a series of object files in the .lib format so that they contain pointers to that jumptable. 

Building the different idata sections

Building a standard stub

The .LIB file format

Writing the different stubs

Summary: Building an import library from a dll.

The usage of the implib utility is really simple: you just give it the name of a dll. It will eliminate the .dll suffix, replace it by a .lib suffix, and build a library file with all the stubs for the exported functions of the dll.



�The resource compiler

The .rc language specifications.

This language was developed to specify resource files. It describes the basic resource types, i.e; the following objects:

Menus

Dialog boxes

Accelerators

String tables

Icons

Bitmaps

Cursors

Fonts

Version

Each object is introduced in the following manner:

Name or ID	OBJECTNAME	[Options]

For instance, to specify a Menu object, you would write:

2800	MENU	Discardable

The language supposes that there is a preprocessor that allows for #defines, #if, #ifdef, etc etc. The specifications of the preprocessor are identical to the C preprocessor, so I will not discuss it further here.

Parsing

Initially, I was tempted to use the public domain ‘rcl’ resource compiler developed by Gunther Ebert, in Leipzig. Gunther used the standard Unix approach of lex/yacc. 



His compiler is constructed with a ‘lexer’ that is written in the ‘lex’ language specifications, and a parser, specified in the ‘yacc’ notation. The ‘lexer’ is built by a program called ‘lex’, that generates a lexer from the specifications it reads. The parser is generated by the ‘yacc’ program, that writes a parser using the specifications given in the ‘yacc’ language.



This approach is very flexible, but it had several disadvantages for the purposes of a resource compiler:

It is very hard to debug a ‘yacc’ specification.

Yacc and ‘flex’ are not readily available under Windows 32. I had to use my linux machine, to compile the lexer+parser, then use ftp to move the result to windows, and then recompile. And this for each change done to the specification.

It was very complicated to do apparently simple things like processing optional arguments etc etc.



So I decided to use the same approach as described by Fraser and Hanson in their book about lcc: the recursive descent approach.



The resulting parser was much smaller, and  much easier to debug.



The parser

Parsing is done following a rather simple ‘algorithm’:

while (not EndOfFile) do {

	token = readtok();

	if (isAnObjectToken(token)) {

		ParseObject(token);

	}

}



Following are the object tokens, i.e. the tokens that introduce an object:

DIALOG MENU,ACCELERATORS STRINGTABLE VERSION BITMAP CURSOR ICON.



Simple isn’t it? The parser just ignores all input except those words. When it sees one of those, it will parse an object specification, that should leave the last token untouched.



To avoid that the resource compiler sees a token in another context it #defines the following pre-processor symbol: RC_INVOKED. Most definitions in the windows header files are enclosed in a pair of ifdefs

#ifndef RC_INVOKED

typedef ...

#endif



This prevents random matches. If you use structure definitions in the header files the resource compiler will see, take care to enclose your definitions as shown. In any case, the consequences of seeing a random definition are not very bad, since it will only provoke a cascade of error messages.



The function ‘gettok() does a classification of the input passed to the parser by the preprocessor. It returns :

A character, i.e. a value between 32 and 127. This will be returned for commas, brackets, etc.

A constant between 1000 and 1999 for different classes of input, indicating whether the input is a number, an identifier, a floating point constant, a string, or other things. The value will be left in a global variable, so that the rest of the parser can use it.

A constant between 2000 and 3000 if the input is an rc keyword.



The top level parser function looks like this:



static int Parse(void)

{

	int ttype;



	ttype = gettok();

	do {

		switch(ttype) {

		case EOI:

			return(1);

		case KEY_DIALOGEX:

			ParseDialog(1);

			break;

		case KEY_DIALOG:

			ParseDialog(0);

			break;

		// other cases omitted for brevity

		}

		ttype = gettok();

	} while (ttype != EOI);

	

	return(1);

}



Each of the functions called will parse the grammar for the description of the object, leaving the last token in the input. Here is the description of each one:



Dialog statement

nameID DIALOG [ load-mem] x, y, width, height�[optional-statements]�BEGIN�    control-statement�    . . .�END



The ParseDialog() function retrieves the last integer/identifier, and uses that as the name for the dialog. Then, the ‘load-flags’ are parsed, but ignored. Those flags were very important under windows 3.1, but now they are not used. They were maintained to have a backwards compatibility with the resource scripts written for windows 3.1.



The function goes on parsing the coordinates of the dialog box. After that, we arrive at the optional statements. Those can be:

FONT Followed by a point size, a font name, and if it is a DIALOGEX statement, the weight of the font and an italics flag.

CAPTION Followed by a character string indicating the caption text.

CLASS statement indicating the class of the dialog. Normally this is not used.

CHARACTERISTICS field, followed by a 32 bit number. This is not used by windows, and the resource editor never generates it.

STYLE followed by the window style of the dialog box window. 

EXSTYLE followed by the extended style of the dialog box window. This can be used only within a DIALOGEX statement, and not a normal DIALOG statement.

LANGUAGE followed by two numbers specifying the language and the sub-language code.

VERSION followed by a version number for the dialog. This is not used by windows.





Once this preliminaries are done, we can start parsing the contents of the dialog box, the different CONTROL statements. This statements have all the same syntax, excepting the CONTROL statement.

NAME text, id, x, y, width, height [, style [, extended-style]]



Here is a table indicating for each of the named controls, its class, default styles and usage.



NAME�Remarks�Default Styles�Class���GROUPBOX�This statement builds a transparent rectangle to group some items into a common group�BS_GROUPBOX�Button��LTEXT�Left aligned static text�SS_LEFT�Static��CTEXT�Cenetered static text�SS_CENTER�Static��RTEXT�Right aligned static text�SS_RIGHT�Static��LISTBOX�Builds a listbox. Normally the ‘text’ field is empty�WS_BORDER LBS_NOTIFY�Listbox��EDITTEXT�Builds an edit field. Normally the ‘text’ field is empty�ES_LEFT WS_BORDER WS_TABSTOP�Edit��ICON�This creates a static text window at the position specified. Since Icons have a fixed width and height, those fields are not necessary. If you specify them, the resource compiler will read and ignore them.�SS_ICON�Static��PUSHBOX�This creates a button with the BS_PUSHBOX style�BS_PUSHBOX WS_TABSTOP�Button��PUSHBUTTON�This creates a normal push button.�BS_PUSHBUTTON WS_TABSTOP�Button��RADIOBUTTON�This creates a radio button�BS_RADIOBUTTON�Button��SCROLLBAR�Creates a scroll bar�WS_TABSTOP�Button��STATE3�Create a three state check box�BS_3STATE�Button��COMBOBOX�Creates a combo box��Combobox��CHECKBOX�Does a check box�BS_CHECKBOX WS_TABSTOP�Button��AUTORADIOBUTTON�Radio button with the ‘automatic’ style.�BS_AUTORADIOBUTTON�Button��AUTOCHECKBOX�Check box with the ‘automatic’ style�BS_AUTOCHECKBOX�Button��DEFPUSHBUTTON�This is the default button that will be used when you press return.�BS_DEFPUSHBUTTON WS_TABSTOP�Button��

The general Control statement has the following form:

CONTROL text, id, class, style, x, y, width, height [, extended-style]

All statements numbered before can be written using the ‘control’ statement. They are just shorthands for this one.

The ‘extended style’ can only be used if it is an extended dialog (DIALOGEX).



MENU Statement

menuID MENU [load-mem]�[optional-statements]�BEGIN�    item-definitions�    . . .�END

  

This statement introduces a menu description, with each of the POPUPS described within a BEGIN/END block.

The binary format generated is as follows:

Normal resource header with type 4 (menu).

A flags word. If the flags contain the ‘POPUP’ flag (0x10) this indicates an implicit begin/end block. If not, it is a menu item. The text of the popup follows in unicode characters.

A menu item contains a flags word, followed by the ID of the menu item (the parameter you will receive when processing WM_COMMAND messages), followed by the text of the menu item in unicode characters.

The last item of the menu contains the flag 0x80 to indicate the end of the menu description.

The different image resources (icons, bitmaps, cursors)

The specifications for those resources are like this:



The ICON statement in the .RC script does not create a single resource object, but creates a group of resources. This allows Windows-based programs a degree of device independence through the use of different pixel bitmaps on hardware configurations with differing capabilities. Icons, most often designed for differing numbers of pixel planes and pixel counts, are grouped and treated by Windows as a single resource. In the .RES and .EXE files, however, they are stored as a group of resources. These groups are stored in a .RES file with the components first (in this case the different icons [type 3]) and a group header following (type 14). The group header contains the information necessary to allow Windows to select the proper icon to display.



The components have the following structure:

     [Resource header (type = 3)]



     [DIB Header]

     [Color DIBits of icon XOR mask]

     [Monochrome DIBits of AND mask]



I had a lot of trouble building that resource header. I think I have gotten it right now, but beware... As a test of the correctness of ‘lrc’, I used ‘weditres’, that will display the icons, and decode that resource header.



Basically, the compiler treats all of these the same: it will read a file specification, and put that file unchanged in the resource file. No magic is performed, i.e. for instance for icons, the Xor of the image is not performed to have a black and white and a color version. The compiler doesn’t generate different icons for vga, svga, and other resolutions either... SO: please edit your icons with another tool before. Of course, the resource editor will eventually have an icon editor, but this is not done yet...

The string table resource

STRINGTABLE [load-mem] [optional-statements]�BEGIN�    stringID string�    . . .�END

  

As usual, the ‘load’ flags are parsed but ignored. The optional statements can be ‘Language’, ‘Characteristics’ or ‘Version’ keywords.

The format of each string is just a numerical ID, followed by the string enclosed in quotes. The usual expansions for C character strings are performed.

Strings are clustered together in blocks of 16 strings, keyed by the numerical ID. The algorithm is rather complicated;

The strings should be sorted by ID, because the linker lcclnk will not sort them when transforming the resource in object files.

Transform all strings into unicode before storing them. They are stored preceeded by a word indicating the string length. They are NOT zero terminated.

Use the lower 4 bits of the id to indicate a position within a block of 16 strings with consecutive Ids.

Use the upper 12 bits of the plus one, to give a resource ID for a string resource of type 6 (string table resource type).

This means that if you give a string an ID that is isolated from other Ids you will waste space in the resource file, since an almost empty block containing only one string+the resource header will be stored.



Here is the essential part of the string-resource writing function:

	idx = 0;					// running index through the table

	buffer = allocate(20000); 	// buffer space

	bufferlen = 20000;			// its length

	do {

		memset(slots,0,sizeof(slots))// clean the slot

		first = StringTable[idx]->id;// first index

		len = 32; // 16 * sizeof(word)

		// the variable ‘strings’ is the total number of strings in the table

		while (idx < strings ) {	// fill a slot of 16 strings

			id = StringTable[lastidx]->id; // get this string id

			// test if this string belongs to this block

			if ((first & (~0xF)) == (id & (~0xf))) {

				slots[(id&0xF)] = StringTable[lastidx];

				len += 2*(StringTable[lastidx]->len);

				lastidx++;

			}

			else {// this block is full

				break;

			}

		}

		// test if the buffer is big enough

		if (len > bufferlen) {

			len += 500;

			buffer = MyRealloc(buffer,len);

			bufferlen = len;

		}

		// Now copy all the strings found into the output buffer

		p = buffer;

		for (i=0; i<16; i++) {

			if (slots[i] && slots[i]->len) {

				len = slots[i]->len;

				p = WriteWord(p,(WORD)(len));

				mbstowcs((WORD *)p,slots[i]->Text,len);

				p += 2*len;

			}

			else p = WriteWord(p,0);

		}

		WriteStringResource(buffer,

			p - buffer,

			1+(first >> 4),

			characteristics,language,version);

		idx = lastidx;

		

	} while (idx < strings);



The RCDATA resource

nameID RCDATA [[load-mem]]�[[optional-statements]]�BEGIN�    raw-data�    . . .�END

This resource is not extremely difficult to do. Just parse a normal header, its type in the resource header is 10, and then read a series of strings or integers between the ‘BEGIN’ and ‘END’ keywords. A thing to be remembered is that integers, unless they end with the ‘L’ are 16 bits...

Limitations of the resource compiler

The FONT resources are not supported yet. They will be added in the future as time permits...

�The resource editor 

I wrote a resource editor for JFC Informatique & Média in 1994, for Windows 3.1. That editor was specially tailored to them and started with the need that they have, of producing high quality dialog boxes and resources for their applications. 



They used the ‘MDI’� paradigm in all their applications. Problem is, it wasn’t easy to create the controls in the MDI’s by hand. This was attempted by them at the beginning, but quickly they arrived to the conclusion that they needed a tool for writing their dialog boxes and designing them interactively. They payed me an amount of money to do it, and I delivered to them an editor that could design dialog boxes without using dialog units, as they desired. The problem of dialog box units, as you maybe have experienced, is that it is impossible when you use them, to specify the positions in pixels. This means that depending on the circumstances your controls will miss a pixel here and there, and will not be exactly aligned. This was unacceptable for them.



I decided to use the experience I had accumulated about resources and resource files, to build a resource editor for Lcc-Win32.



The best place for starters was evidently the code of DLGEDIT, a simple dialog box editor that is distributed freely by Microsoft with the SDK. That code is clear, more or less easy to follow if you understand what the program is doing. So, I think that the best would be that we start by that: what the program is doing, i.e. the format of the .RES files under WIN32.



The only document that briefly describes the format of the resource files is the one by Steve Firebaugh that appears in the MSDN Cds under the strange title of ‘Windows NT File format specification’, subitem ‘Win32 Binary Resource formats’



There are currently about a dozen predefined resource types. These include Menus, Dialogs, Accelerators, Strings, Icons, Cursors, Bitmaps, Fonts, and Version. These resources are used by the Windows system to define the appearance of the application window, or to store dialog templates or other data.. The resource script (RC file) allows the application writer to represent these features in an easily editable form.

The format of the .RES files

The general format of the entire resource file is simply a number of resource file entries concatenated together. Each resource contains the information about a single resource, such as a dialog template or a string table.

Each entry consists of a resource header followed by the data for that resource. A resource header is composed of four elements: two DWORDs containing the size of the header and the size of the resource data, the resource type, the resource name, and additional resource information. The data for the resource follows the resource header and is specific to each particular type of resource.



The reasons for this are simple: To go from one resource to the next within the file, you just add the fields for the header and the data, and you are all set... if you forget the alignment problems of course.



This is immediately followed by a data structure we will meet very often here: a ‘Name or ordinal’. Simply put, you examine the first WORD. If it is -1 (0xFFFFFF) the next WORD indicates the ordinal that is used instead of a name. If the first word is NOT -1, this means that a wide character set string starts at the given position, finished with a double zero byte.



The fixed part header then, is followed by a ‘Name or ordinal’ indicating the type of the resource that follows. The predefined resource types are described in the Appendix �

If the type field is a string, its a user defined type. Lcc, for the time being doesn’t use those.



This is followed by the name of the resource, that is in most cases just an ID to save space.

The other fields of the header are language ID for indicating the language used, some flags to specify how the resource will be loaded, that are maintained mostly for compatibility with older Windows 3.1 applications, some version information and a ‘Characteristics’ field.



So, we have for our header the following format:

struct tagResource {

	DWORD		DataSize;		//Size of data without header

	DWORD		HeaderSize;	//Length of the additional header

	Ordinal or name TYPE		//Type identifier, id or string

	Ordinal or name NAME		//Name identifier, id or string

	DWORD		DataVersion;	// Predefined resource data version

	WORD		MemoryFlags;	//State of the resource

	WORD		LanguageId;	//Encoded language ID

	DWORD		Version;		//Version of the resource data

	DWORD		Characteristics;//Characteristics of the data

	} ;



Building a dialog box dynamically

Having read the resource file into memory, we have all the information needed to build a resource like a dialog box dynamically. The procedure for doing this is essentially very simple: Read the header, that contains the number of controls of the dialog box, and loop for each child window, making a CreateWindowEx() for each control. You get the position of each window to be created from the resource object, together with the class, font to be used, etc etc.



Of course this is more easily said than done...



I use the same structure that microsoft proposed for doing that in the windows SDK. I use a ‘grabber’ window, that is created in front of each control, and that lives only to be able to drag and drop the controls, in this way allowing the user to manipulate them visually.



Testing a dialog box interactively

To do this, the editor constructs on the fly a dialog box specification and calls DlgBoxIndirect. The procedure of that dialog handles the initialization of the diverse controls that need something to look better, like list boxes for instance, that will be filled with some lines.

Writing the .dlg file

Writing the .res file

Compiling the .c file

Using the new controls of Win32

Property Sheets

�Wedit: the Integrated development environment

History

This part of lcc-win32 is the oldest. I started working on an editor for programmers around 1989-1990. I used some code from the then popular ‘micro-emacs’ editor, to handle the display logic, mixed in a lot of code to handle the display, and had a functional editor that had the same functionality as window’s notepad, but without the limitation to files smaller than 20K...



Time passed, and I continued to work in the editor, adding the function list, the ability to jump to a symbol’s definition with a function key, and a ‘make’ utility..



I developed special purpose-parsers to be able to reparse a whole file in a 486-33 without much waiting. Programmers tend to be impatient, and a long wait is always something that puts people off This special purpose scanners just ignore most of the text, and concentrate in some sequence of characters of interest. This makes them very fast. No I/O is needed, since the text is already loaded in memory by the editor.



Another things that I added were a versioning system, software metrics, and then, the real-time syntax coloring of keywords/comments.



I built several utilities in the editor like ‘grep’, ‘diff’, a ‘camera’ to take screen snapshots, an utility to generate automatically .hlp files from the C sources, another utility to extract strings into .def files, the project management module,the keyboard configuration... the years passed by. 



I quitted my flat in the center of Paris to go to the suburbs, where I found a home with a small garden, and enough space to put the two children, that Annie gave me.



And I went on building that system.



Programmers are bound to build ephemeral works. Nothing is left from all the programs we write. In a few years, all of our work is thrown away with that obsolete system we wrote it in, that can never be like the new one... just because its ridiculous hardware limitations. 



I wondered sometimes where are now those APL programs I wrote during the early seventies...Not even the docs of that Siemens 4004 are left, with that ‘enormous’ virtual workspace of 32K. And APL itself, has faded into the emptiness awaiting obsolete languages. ‘STSC’, the biggest ‘APL’ company has disappeared from view, and many people today have never even heard that name.



There were good concepts in that language though, concepts that I have been re-introducing into lcc-win32 with the ‘intrinsics’ interface. Operations with tables were the basics of APL. You could write in that language:

	C = A+B

A and B being vectors of the same size, the notation was simple, and very powerful.



This ephemeral nature of my activity was frustrating though.. I concentrated in Wedit because I tried to build something that would stand the judgment of the years, something that was worth working for. Most people are happy if they can work and are being paid for what they do. No matter what they do.



I don’t.

Real time coloring of text

Two different problems arise with coloring text.



The first is to find out where all the comments start and end. The second is to display the text that is NOT a comment, according to the keywords table.

Comments

To find out the comments I scan all the file, storing the information in a linked list. Then, I find out the comment (if any) that begins just before the screen that the user will see. I save this comment in the screen display structure.



When the user makes a change to the file, it MUST make a change in the visible;portion of the file being edited. Keeping that comment pointer allows me to start re-scanning the comments at that point, instead of re-scanning all the file from the beginning.



There are many events that can force a reconstruction of the list, or a partial build beginning with the last comment:



A letter typed in a sensible place: For instance you have:

/* This is a comment */

and you type a ‘b’ just after the first ‘/’. The editor should immediately change the color of the whole comment to normal, since it is no longuer a comment.

A sensible character: For instance you type a ‘*’ after a slash. All the text up to the end of the display should change color (if there are no intervening comments of course).

The delete char has to be tested for the same reasons. And block move operations as a matter of course.



Once the comments are found, we can draw the rest of the text. At each word, the editor looks up the current keyword table to see if it matches, and then draws the text according to the current color table.

Handling the selection and the clipboard

Special purpose parsers

Software metrics

The object file cross-referencing utility

This functionality has been incorporated in the linker (the -x option), but I still retained the code in Wedit because it allows much more flexibility, since there is no need to build an executable. You can add/eliminate object files according to the interests you have at the time of the search.

The built-in utilities

Grep

Diff

Formatting C programs

Generating a Makefile

Starting a make and displaying the results



�The debugger

After the dialog box editor was working (more or less, maybe less than more but anyways it edited the dialogs of Wedit) I started the final phase of this work. The problem was, to understand how I could start a program under debugger control, follow its execution, set/unset breakpoints, etc. 



I was lucky indeed, because I could start working under Win32, a modern system that offers a high level debugger interface. The old and horrible times of Windows 3.1, with its unprotected memory model, its 16 bit limitations were (at last) well behind us. Under those conditions, building a debugger all by myself would have been utterly impossible.



Nevertheless, I had never written a debugger before. So I started playing with the idea of looking in gdb, GNU ‘s debugger, to see how a debugger works. That was impossible. Again, I was in front of tons of code that I couldn’t make any sense of. So I looked elsewhere. A good start was given by an article in Windows/Dos Programmer’s Journal, with an article about debugger writing. In that seminal article I discovered how breakpoints are set/unset, how the basics of a debugger, the mechanics inside are built. Starting from there I wrote a bridge to the rest of Wedit, and embarked myself in yet another ‘project’.



Starting a program under debugger control.

The debugger starts by 

Creating 3 differrent events for notifying the debugging threads of certain events:

Event running: the debuggee is running

Event resume: to restart the debuggee after a breakpoint

Event Kill: to stop the debuggee.

Creates a secondary thread that will handle all the debugging chores.



The debugging thread first launches the debugge under control of the debugger. This is done in the function ‘LaunchDebuggee’ in the file debug.c. This function is just a call to CreateProcess with the flags DEBUG_PROCESS set. 



The debugging thread then listens for any of the events created for it. using the WaitForMultipleObjects primitive of Win32. When one of the events is reset, WaitForMultipleObjects returns. I check which event was reset, and act accordingly. If it was the EVENT_RUNNING event, I start to listen for notifications from the debuggee using the function CheckForDebugEvent.



CheckForDebugEvent uses the primitive WaitForDebugEvent with a timeout of 100 ms. There are several notifications I can receive from the system:

The first one is the ‘CREATE_PROCESS_DEBUG_EVENT’ of course. Windows is kind enough to tell me that the debuggee has started. I use that information to do following chores:

Read all the debug information. This is done in the dbginfo.c file. I build several tables with the global symbols, the local symbols by module, the names of the functions, etc. If I do not find the debug information I quit. For the time being, the debugger is not able to do assembly only debugging. I found anyway that this is not particularly useful...

I find out the address of the WinMain or the main function, and set a breakpoint there

I tell Wedit to load the source file that contains the main/WinMain function and show the first line in that function.

Other notifications are received with the EXCEPTION_DEBUG_EVENT notification. I handle those in the function DoExceptionEvent. There, I dispatch with a switch statement that handles all types of exceptions that Windows can send me. The main ones are:

EXCEPTION_BREAKPOINT. This means that nothing horrible has happended: The debuggee has just hitted a breakpoint.

EXCEPTION_SINGLE_STEP. This means that I am single-stepping through the code, and an instruction has been executed.

EXCEPTION_ACCESS_VIOLATION is much more serious. The debuggee has crashed, and I have to clean up the pieces of the schock and tell the user the bad news.

Other exceptions. For the time being I do not handle many of those. They are things like a user interrupt (Ctrl+C) division by zero, floating point overflow, etc.

Another notification worth mentioning is the EXIT_PROCESS_DEBUG_EVENT, that informs me that the debuggee has exited normally.

Preparing for debugging

You should compile a program with the ‘-g2’ option turned on, to force the compiler to emit the debug information. Normally, it is better to compile always with this option turned on, since if you can tell the linker to ignore it with the ‘-s’ option.



The optimizer should be disabled when you want to debug a program. The problem with optimized code, is that, for instance, sometimes it will avoid constructing a stack frame for a function that doesn’t need it. this can severly confuse the debugger. But in general, the optimizer of lcc doesn’t do any agressive optimizations, so the optimized code can safely be used with the debugger.



Reading the debug information

Reading the imports table

Finding out where the real entry point is

The different debugger displays

The ‘assembler view’ (code) display

This view was the first one that needed to be done. To debug the debugger there wasn’t any other choice...

It consists of a list box, that maintains in the LB_DATA field, the address of each displayed instruction. I display only the contents of the current function.

The ‘Memory watch’ display

The stack display

The Locals display

Displaying structures

Setting/Unsetting breakpoints

The operation of the ‘Trace’ mode

The operation of the ‘Step’ mode

Recovering after a program crash

�Modifications to lcc’s x86 machine description

;;

;; This part was added for the lcc-win32 x86 machine description.

;; In general this rules will NOT work with the standard front end because

;; they do not take into account the vacuous conversions: CVUP CVIU and all

;; others. I eliminated them in the front end since if we maintained them

;; this already long machine description would be completely unmanageable.

;; The number of rules increases exponentially when those conversions are

;; present. It is a simple modification of one line in dag.c

;;

;;

;; This rules have the general form:

;; ASGNX(addr,OPERATION(INDIRX(addr),constant))

;; Note that both addresses SHOULD BE THE SAME. This test is taken care

;; of by the function 'incrmem'.

;;

stmt: ASGNP(addr,ADDP(INDIRP(addr),acon)) "\taddl\t$%2,%0\n" incrmem(a)

stmt: ASGNP(addr,SUBP(INDIRP(addr),acon)) "\tsubl\t$%2,%0\n" incrmem(a)

stmt: ASGNI(addr,ADDI(INDIRI(addr),con))  "\taddl\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,ADDU(INDIRI(addr),con))  "\taddl\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,SUBI(INDIRI(addr),con))  "\tsubl\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,SUBU(INDIRI(addr),con))  "\tsubl\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,BANDU(INDIRI(addr),con)) "\tandl\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,BORU(INDIRI(addr),con))  "\torl\t%2,%0\n"  incrmem(a)

stmt: ASGNI(addr,LSHI(INDIRI(addr),con))  "\tsall\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,LSHU(INDIRI(addr),con))  "\tsall\t%2,%0\n" incrmem(a)

stmt: ASGNI(addr,RSHI(INDIRI(addr),con))  "\tsarl\t%2,%0\n" incrmem(a)



;;

;; This rules simplify unnecessary conversions from 1. Note that the

;; test for the tree shape is done by a different function since the

;; trees are different.

;;



stmt: ASGNS(addr,CVIS(ADDI(CVSI(INDIRS(addr)),con1))) "\tincw\t%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVIS(SUBI(CVSI(INDIRS(addr)),con1))) "\tdecw\t%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(ADDI(CVCI(INDIRC(addr)),con1))) "\tincb\t%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(SUBI(CVCI(INDIRC(addr)),con1))) "\tdecb\t%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(SUBI(CVCU(INDIRC(addr)),con1))) "\tdecb\t%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVUS(SUBI(CVSU(INDIRS(addr)),con1))) "\tdecw\t%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVUS(ADDI(CVSU(INDIRS(addr)),con1))) "\tincw\t%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(ADDI(CVCU(INDIRC(addr)),con1))) "\tincb\t%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(SUBI(CVCU(INDIRC(addr)),con1))) "\tdecb\t%0\n" immediateOpShort(a)

;;

;; This rules act directly between a constant and a memory location. Similar

;; to the rules above

;;



;;

;; First short convertions

;;

stmt: ASGNS(addr,CVIS(SUBI(CVSI(INDIRS(addr)),con)))  "\tsubw\t%2,%0\n" 1+immediateOpShort(a)

stmt: ASGNS(addr,CVIS(ADDI(CVSI(INDIRS(addr)),con)))  "\taddw\t%2,%0\n" 1+immediateOpShort(a)

stmt: ASGNS(addr,CVIS(BANDU(CVSI(INDIRS(addr)),con))) "\tandw\t%2,%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVIS(BORU(CVSI(INDIRS(addr)),con)))  "\torw\t%2,%0\n"  immediateOpShort(a)

stmt: ASGNS(addr,CVIS(LSHI(CVSI(INDIRS(addr)),con)))  "\tsalw\t%2,%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVIS(RSHI(CVSI(INDIRS(addr)),con)))  "\tsarw\t%2,%0\n" immediateOpShort(a)



stmt: ASGNS(addr,CVUS(SUBI(CVSU(INDIRS(addr)),con)))  "\tsubw\t%2,%0\n" 1+immediateOpShort(a)

stmt: ASGNS(addr,CVUS(ADDI(CVSU(INDIRS(addr)),con)))  "\taddw\t%2,%0\n" 1+immediateOpShort(a)

stmt: ASGNS(addr,CVUS(BANDU(CVSU(INDIRS(addr)),con))) "\tandw\t%2,%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVUS(BORU(CVSU(INDIRS(addr)),con)))  "\torw\t%2,%0\n"  immediateOpShort(a)

stmt: ASGNS(addr,CVUS(LSHI(CVSU(INDIRS(addr)),con)))  "\tsalw\t%2,%0\n" immediateOpShort(a)

stmt: ASGNS(addr,CVUS(RSHI(CVSU(INDIRS(addr)),con)))  "\tsarw\t%2,%0\n" immediateOpShort(a)



;; Then character conversions

;;

stmt: ASGNC(addr,CVUC(SUBI(CVCU(INDIRC(addr)),con)))  "\tsubb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(ADDI(CVCU(INDIRC(addr)),con)))  "\taddb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(BANDU(CVCU(INDIRC(addr)),con))) "\tandb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(BORU(CVCU(INDIRC(addr)),con)))  "\torb\t%2,%0\n"  immediateOpShort(a)

stmt: ASGNC(addr,CVUC(LSHI(CVCU(INDIRC(addr)),con)))  "\tsalb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVUC(RSHI(CVCU(INDIRC(addr)),con)))  "\tsarb\t%2,%0\n" immediateOpShort(a)



stmt: ASGNC(addr,CVIC(SUBI(CVCI(INDIRC(addr)),con)))  "\tsubb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(ADDI(CVCI(INDIRC(addr)),con)))  "\taddb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(BANDU(CVCI(INDIRC(addr)),con))) "\tandb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(BORU(CVCI(INDIRC(addr)),con)))  "\torb\t%2,%0\n"  immediateOpShort(a)

stmt: ASGNC(addr,CVIC(LSHI(CVCI(INDIRC(addr)),con)))  "\tsalb\t%2,%0\n" immediateOpShort(a)

stmt: ASGNC(addr,CVIC(RSHI(CVCI(INDIRC(addr)),con)))  "\tsarb\t%2,%0\n" immediateOpShort(a)



zero: CNSTI     "0"     iszero(a)



zero: CNSTI     "0"     iszero(a)

zero: CNSTU     "0"     iszero(a)



con8: CNSTI     "%a"    iscon8(a)

con16: CNSTI    "%a"    iscon16(a)



;; Comparisons with zero

;;

stmt: EQI(BANDU(mem,con8),zero) "\ttestb\t%1,%0\n\tje\t%a\n"

stmt: EQI(BANDU(mem,con16),zero) "\ttestw\t%1,%0\n\tje\t%a\n"

stmt: EQI(BANDU(mr,con),zero) "\ttestl\t%1,%0\n\tje\t%a\n" 3

stmt: EQI(BANDU(CVCU(mem8),con),zero) "\ttestb\t%1,%0\n\tje\t%a\n"

stmt: EQI(BANDU(CVCI(mem8),con),zero) "\ttestb\t%1,%0\n\tje\t%a\n"



stmt: EQI(BANDU(CVSI(INDIRS(addr)),con),zero) "\ttestw\t%1,%0\n\tje\t%a\n"

stmt: EQI(BANDU(CVCI(INDIRC(addr)),con),zero) "\ttestb\t%1,%0\n\tje\t%a\n"

;;

;; this beauty results when you do the C statement:

;; if (isdigit(c))

;;

stmt: EQI(CVUI(BANDU(CVIU(CVUI(CVCU(INDIRC(mr)))),con)),zero) "\ttestb\t%1,%0\n\je\t%a\n 

stmt: NEI(CVUI(BANDU(CVIU(CVUI(CVCU(INDIRC(mr)))),con)),zero) "\ttestb\t%1,%0\n\jne\t%a\n 

stmt: NEI(BANDU(INDIRI(addr),con8),zero) "\ttestb\t%1,%0\n\tjne\t%a\n"

stmt: NEI(BANDU(INDIRI(addr),con16),zero) "\ttestw\t%1,%0\n\tjne\t%a\n"

stmt: NEI(BANDU(INDIRI(addr),con),zero) "\ttestl\t%1,%0\n\tjne\t%a\n"

stmt: EQI(BANDU(INDIRI(addr),con),zero) "\ttestl\t%1,%0\n\tje\t%a\n"

stmt: EQI(BANDU(INDIRC(addr),con8),zero) "\ttestb\t%1,%0\n\tje\t%a\n"

stmt: NEI(BANDU(INDIRC(addr),con),zero) "\ttestb\t%1,%0\n\tjne\t%a\n"

stmt: EQI(BANDU(reg,con),zero) "\ttestl\t%1,%0\n\tje\t%a\n" 1

stmt: EQI(BANDU(reg,con16),zero) "\ttestw\t%1,%0\n\tje\t%a\n"

stmt: NEI(BANDU(reg,con),zero) "\ttestl\t%1,%0\n\tjne\t%a\n"

stmt: NEI(BANDU(INDIRI(addr),con16),zero) "\ttestw\t%1,%0\n\tjne\t%a\n"



;; Comparing directly 16 bit data in a memory location to an immediate constant

;;

stmt: NEI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjne\t%a\n"

stmt: NEI(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjne\t%a\n"

stmt: LEI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjle\t%a\n"

stmt: LEU(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjbe\t%a\n"

stmt: LTI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjl\t%a\n"

stmt: LTU(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjb\t%a\n"

stmt: GTI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjg\t%a\n"

stmt: GTU(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tja\t%a\n"

stmt: GEI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjge\t%a\n"

stmt: GEU(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tjae\t%a\n"

stmt: EQI(CVSI(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tje\t%a\n"

stmt: EQI(CVSU(INDIRS(addr)),con) "\tcmpw\t%1,%0\n\tje\t%a\n"



stmt: NEI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjne\t%a\n"

stmt: NEI(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjne\t%a\n"

stmt: EQI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tje\t%a\n"

stmt: EQI(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tje\t%a\n"

stmt: LEI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjle\t%a\n"

stmt: LEU(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjbe\t%a\n"

stmt: LTI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjl\t%a\n"

stmt: LTU(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjb\t%a\n"

stmt: GTI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjg\t%a\n"

stmt: GTU(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tja\t%a\n"

stmt: GEI(CVCI(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjge\t%a\n"

stmt: GEU(CVCU(INDIRC(addr)),con) "\tcmpb\t%1,%0\n\tjae\t%a\n"



base: ADDP(ADDRGP,acon) "%a+%1"

stmt: NEI(mem,con) "\tcmpl\t%1,%0\n\tjne\t%a\n"

stmt: EQI(mem,con) "\tcmpl\t%1,%0\n\tje\t%a\n"

stmt: LEI(mem,con) "\tcmpl\t%1,%0\n\tjle\t%a\n"

stmt: LEU(mem,con) "\tcmpl\t%1,%0\n\tjbe\t%a\n"

stmt: GEI(mem,con) "\tcmpl\t%1,%0\n\tjge\t%a\n"

stmt: GEU(mem,con) "\tcmpl\t%1,%0\n\tjae\t%a\n"

stmt: LTI(mem,con) "\tcmpl\t%1,%0\n\tjl\t%a\n"

stmt: LTU(mem,con) "\tcmpl\t%1,%0\n\tjb\t%a\n"



;; Comparing a word (16 bits) to a register. Note: the meaning

;; is preserved, but the jumps are in the *opposite direction*

;; because the register should be at the left side, if not my

;; assembler will go nuts! Note that here we have:

;; %0,%1

;; instead of

;; %1,%0

;;



stmt: EQI(reg,CVSI(INDIRS(addr))) "\tcmpw\t%0,%1\n\tje\t%a\n"

stmt: NEI(reg,CVSI(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjne\t%a\n"

stmt: LEI(reg,CVSI(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjge\t%a\n"

stmt: LEU(reg,CVSU(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjae\t%a\n"

stmt: GTI(reg,CVSI(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjl\t%a\n"

stmt: GTU(reg,CVSU(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjb\t%a\n"

stmt: LTI(reg,CVSI(INDIRS(addr))) "\tcmpw\t%0,%1\n\tjg\t%a\n"

stmt: LTU(reg,CVSU(INDIRS(addr))) "\tcmpw\t%0,%1\n\tja\t%a\n"

;;

;; This happens in the C idiom:

;; if (!somfn())

;; when somfn returns an unsigned short.

;;

stmt: NEI(CVSU(CVUS(reg)),zero)   "\torw\t%0,%0\n\tjne\t%a\n"

stmt: EQI(CVSU(CVUS(reg)),zero)   "\torw\t%0,%0\n\tje\t%a\n"

stmt: NEI(CVSI(CVIS(reg)),zero)   "\torw\t%0,%0\n\tjne\t%a\n"

stmt: EQI(CVSI(CVIS(reg)),zero)   "\torw\t%0,%0\n\tjne\t%a\n"



;; Some floating point constnts can be generated directly by the

;; machine. This is not faster but should save space in the data

;; segment once I convice the front end not to generate them.



dcon1: CNSTD "\tfld1\n" dequal(a,1)

dcon0: CNSTD "\tfldz\n" dequal(a,0)

dcon1: CNSTF "\tfld1\n" fequal(a,1)

dcon0: CNSTF "\tfldz\n" fequal(a,0)

freg: dcon1 "%0"

freg: dcon0 "%0"



;; This floating point operations were missing from the machine

;; description.



freg: DIVD(freg,CVID(INDIRI(addr))) "\tfidivl\t%1\n"

freg: DIVD(CVID(INDIRI(addr)),freg) "\tfidivrl\t%0\n"

freg: DIVD(freg,CVID(CVSI(INDIRS(addr)))) "\tfidivs\t%1\n"

freg: DIVD(CVID(CVSI(INDIRS(addr))),freg) "\tfidivrs\t%0\n"

freg: MULD(freg,CVID(INDIRI(addr))) "\tfimull\t%1\n"

freg: MULD(freg,CVID(CVSI(INDIRS(addr)))) "\tfimuls\t%1\n"

freg: SUBD(freg,CVID(INDIRI(addr))) "\tfisubl\t%1\n"

freg: SUBD(CVID(INDIRI(addr)),freg) "\tfisubrl\t%0\n"

freg: SUBD(freg,CVID(CVSI(INDIRS(addr)))) "\tfisubs\t%1\n"

freg: SUBD(CVID(CVSI(INDIRS(addr))),freg) "\tfisubrs\t%0\n"

freg: ADDD(freg,CVID(INDIRI(addr))) "\tfiaddl\t%1\n"

freg: ADDD(freg,CVID(CVSI(INDIRS(addr)))) "\tfiadds\t%1\n"

freg: ADDD(freg,CVFD(INDIRF(addr))) "\tfdivs\t%1\n"

freg: SUBD(freg,CVFD(INDIRF(addr))) "\tfsubs\t%1\n"

freg: MULD(freg,CVFD(INDIRF(addr))) "\tfmuls\t%1\n"

freg: DIVD(freg,CVFD(INDIRF(addr))) "\tfdivs\t%1\n"

freg: LOADD(memf) "\tfld%0\n"

�

The mmx intrinsics

Introduction

The objective of this proposal is to provide a high level interface for programmers using lcc-win32 for accessing all new MMX instructions.



The MMX instruction set is accessible through intrinsic functions, that are recognized and inlined by the compiler.



The data type used by all MMX intrinsics is an 8 byte union, described in ‘mmx.h’. The interface is designed to work at maximum speed when vectors of this datatype are used. The internal loop necessary to apply the given operation to all elements of the data vectors is generated in-line. The dimensions of both arrays should be identical.



Scalar extension is provided, i.e. one of the inputs to the MMX intrinsics can be a scalar, that will be automatically extended by the compiler to apply the mmx operation to all elements of the input vector.



Since the MMX instructions and floating point instructions are incompatible, it is assumed that a function does not mix floating point and mmx. An emms instruction will be issued in the function epilogue if the mmx instruction set is used.



Obviously, the assembler interface is still available, and assembler instructions can be used direcly. In this case, it is the programmer’s responsability to issue the ‘emms’ instruction.



Instruction Syntax

Instructions vary by: 



Data type: packed bytes, packed words, packed doublewords or quadwords

Signed - Unsigned numbers

Wraparound - Saturate arithmetic

Scalar/Vector data

A typical MMX instruction has this syntax: 



Prefix: 

‘_’ to indicate that this is a compiler reserved word.

‘p’ for Packed, as Intel suggests.�

Instruction operation: for example - ADD, CMP, or XOR

Suffix: 

US for Unsigned Saturation 

S for Signed saturation 

B, W, D, Q for the data type: packed byte, packed word, packed doubleword, or quadword.

‘i’ for ‘immediate’ (scalar) data. If this suffix is not present, the function operates over two arrays.



Description of the interface

Pack with signed saturation

The pack operation operates with words (packed to bytes) or with dwords (packed to words).



void _stdcall _packsswb(_mmxdata *array1,_mmxdata *array2,int n);



Description



Each element of array1 will be packed with the corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:



while (n-- > 0) {

    array1[n](7..0)   = SaturateSignedWordToSignedByte array1[n](15..0);

    array1[n](15..8)  = SaturateSignedWordToSignedByte array1[n](31..16);

    array1[n](23..16) = SaturateSignedWordToSignedByte array1[n](47..32);

    array1[n](31..24) = SaturateSignedWordToSignedByte array1[n](63..48);

    array1[n](39..32) = SaturateSignedWordToSignedByte array2[n](15..0);

    array1[n](47..40) = SaturateSignedWordToSignedByte array2[n](31..16);

    array1[n](55..48) = SaturateSignedWordToSignedByte array2[n](47..32);

    array1[n](63..56) = SaturateSignedWordToSignedByte array2[n](63..48);

}



void _stdcall _packsswbi(_mmxdata *array,_mmxdata *imm,int n);



Description



Each element of array1 will be packed with imm. The result is written to array1. The number of elements of array1 is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array[n](7..0)   = SaturateSignedWordToSignedByte array[n](15..0);

    array[n](15..8)  = SaturateSignedWordToSignedByte array[n](31..16);

    array[n](23..16) = SaturateSignedWordToSignedByte array[n](47..32);

    array[n](31..24) = SaturateSignedWordToSignedByte array[n](63..48);

    array[n](39..32) = SaturateSignedWordToSignedByte imm(15..0);

    array[n](47..40) = SaturateSignedWordToSignedByte imm[n](31..16);

    array[n](55..48) = SaturateSignedWordToSignedByte imm[n](47..32);

    array[n](63..56) = SaturateSignedWordToSignedByte imm[n](63..48);

}





void _stdcall _packssdw(_mmxdata *array1,_mmxdata *array2,int n);



Description



Each element of array1 will be packed with the corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array1[n](15..0)  = SaturateSignedDwordToSignedWord array1[n](31..0);

    array1[n](31..16) = SaturateSignedDwordToSignedWord array1[n](63..32);

    array1[n](47..32) = SaturateSignedDwordToSignedWord array2[n](31..0);

    array1[n](63..48) = SaturateSignedDwordToSignedWord array2[n](63..32);

}



void _stdcall _packssdwi(_mmxdata *array,_mmxdata *imm,int n);



Description



Each element of array1 will be packed with the corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array1[n](15..0)  = SaturateSignedDwordToSignedWord array1[n](31..0);

    array1[n](31..16) = SaturateSignedDwordToSignedWord array1[n](63..32);

    array1[n](47..32) = SaturateSignedDwordToSignedWord imm(31..0);

    array1[n](63..48) = SaturateSignedDwordToSignedWord imm(63..32);

}

Pack with unsigned saturation

void _stdcall _packuswb(_mmxdata *array1,_mmxdata *array2,int n);

Description



Each element of array1 will be packed with the corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:



�





while (n-- > 0) {

    array1[n](7..0)   = SaturateSignedWordToUnsignedByte array1[n](15..0);

    array1[n](15..8)  = SaturateSignedWordToUnsignedByte array1[n](31..15);

    array1[n](23..16) = SaturateSignedWordToUnsignedByte array1[n](47..32);

    array1[n](31..24) = SaturateSignedWordToUnsignedByte array1[n](63..48);

    array1[n](39..32) = SaturateSignedWordToUnsignedByte array2[n](15..0);

    array1[n](47..40) = SaturateSignedWordToUnsignedByte array2[n](31..16);

    array1[n](55..48) = SaturateSignedWordToUnsignedByte array2[n](47..32);

    array1[n](63..56) = SaturateSignedWordToUnsignedByte array2[n](63..48);

}



void _stdcall _packuswbi(_mmxdata *array,_mmxdata *imm,int n);

Description



Each element of array1 will be packed with imm. The result is written to array1. The number of elements of array is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array[n](7..0)   = SaturateSignedWordToUnsignedByte array[n](15..0);

    array[n](15..8)  = SaturateSignedWordToUnsignedByte array[n](31..15);

    array[n](23..16) = SaturateSignedWordToUnsignedByte array[n](47..32);

    array[n](31..24) = SaturateSignedWordToUnsignedByte array[n](63..48);

    array[n](39..32) = SaturateSignedWordToUnsignedByte imm[n](15..0);

    array[n](47..40) = SaturateSignedWordToUnsignedByte imm[n](31..16);

    array[n](55..48) = SaturateSignedWordToUnsignedByte imm[n](47..32);

    array[n](63..56) = SaturateSignedWordToUnsignedByte imm[n](63..48);

}

Packed Add

Packed add byte

void _stdcall _paddb(_mmxdata *array1,_mmxdata *array2,int n);

Description



Each element of array1 will be added with each corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array1[n](7..0)   = array1[n](7..0) + array2[n](7..0);

    array1[n](15..8)  = array1[n](15..8) + array2[n](15..8);

    array1[n](23..16) = array1[n](23..16)+ array2[n](23..16);

    array1[n](31..24) = array1[n](31..24) + array2[n](31..24);

    array1[n](39..32) = array1[n](39..32) + array2[n](39..32);

    array1[n](47..40) = array1[n](47..40)+ array2[n](47..40);

    array1[n](55..48) = array1[n](55..48) + array2[n](55..48);

    array1[n](63..56) = array1[n](63..56) + array2[n](63..56);

}

void _stdcall _paddbi(_mmxdata *array1,_mmxdata *imm,int n);

Description



Each element of array1 will be added with imm. The result is written to array1. The number of elements of array is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array[n](7..0)  =  array[n](7..0)   + imm[n](7..0);

    array[n](15..8) =  array[n](15..8)  + imm[n](15..8);

    array[n](23..16) = array[n](23..16) + imm[n](23..16);

    array[n](31..24) = array[n](31..24) + imm[n](31..24);

    array[n](39..32) = array[n](39..32) + imm[n](39..32);

    array[n](47..40) = array[n](47..40) + imm[n](47..40);

    array[n](55..48) = array[n](55..48) + imm[n](55..48);

    array[n](63..56) = array[n](63..56) + imm[n](63..56);

}



Packed add word

void _stdcall _paddw(_mmxdata *array1,_mmxdata *array2,int n);

Description



Each element of array1 will be added with each corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array1[n](15..0)<--array1[n](15..0) + array2[n](15..0);

    array1[n](31..16)<--array1[n](31..16) + array2[n](31..16);

    array1[n](47..32)<--array1[n](47..32) + array2[n](47..32);

    array1[n](63..48)<--array1[n](63..48) + array2[n](63..48);

}



void _stdcall _paddwi(_mmxdata *array1,_mmxdata *imm,int n);

Description



Each element of array1 will be added with imm. The result is written to array1. The number of elements of array is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array[n](15..0)<--array[n](15..0) + imm(15..0);

    array[n](31..16)<--array[n](31..16) + imm(31..16);

    array[n](47..32)<--array[n](47..32) + imm(47..32);

    array[n](63..48)<--array[n](63..48) + imm[n](63..48);

}



Packed add double word

void _stdcall _paddd(_mmxdata *array1,_mmxdata *array2,int n);

Description



Each element of array1 will be added with each corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array1[n](31..0)<--array1[n](31..0) + array1[n](31..0);

    array1[n](63..32)<--array1[n](63..32) + array1[n](63..32);

}



void _stdcall _padddi(_mmxdata *array,_mmxdata *imm,int n);



Each element of array1 will be added with imm. The result is written to array1. The number of elements of array is given by ‘n’.



Mode of operation:





while (n-- > 0) {

    array[n](31..0)<--array1[n](31..0) + imm(31..0);

    array[n](63..32)<--array1[n](63..32) + imm(63..32);

}



Packed Add with saturation

Packed add byte with saturation

a) Signed variants

void _stdcall _paddsb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _paddsbi(_mmxdata *array1,_mmxdata *array2,int n);

b) Unsigned variant

void _stdcall _paddusb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _paddusbi(_mmxdata *array1,_mmxdata *array2,int n);

Description



Each element of array1 will be added with each corresponding element of array2. The result is written to array1. The number of elements of both arrays is given by ‘n’. 

For the signed operation, if the result of the add is saturated to 0x7f or to 0x80 in case of overflow/underflow respectively.

For the unsigned operation, the saturation values are 0xFF and 0x00 in case of overflow/underflow.



Packed add word with saturation

void _stdcall _paddsw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _paddswi(_mmxdata *array1,_mmxdata *imm,int n);

Description



Same operation as in paddsb above. The saturation values are 0x7FFF and 0x8000 for the signed operation, and 0xFFFF and 0x00 for signed / unsigned operations.



Packed And.

void _stdcall _pand(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pandi(_mmxdata *array1,_mmxdata *imm,int n);

The bitwise logical AND operation is done between each 64 bit element of the arrays. The result is written to the array1.



Packed And. Not

void _stdcall _pandn(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pandni(_mmxdata *array1,_mmxdata *imm,int n);



First a bitwise logical NOT on the 64 bits of each element is performed, inverting each bit of the source operand(array2). Then,the bitwise logical AND operation is done between each 64 bit element of the arrays. The result is written to the array1.

Packed compare for equal

The pcmeq intruction compares the data elements of the second argument with those of the first. If they are equal the corresponding elemnt of the first argument becomes one, if they are not, the element becomes zero.

Example (for word comparison)



� INCORPORER Paint.Picture  ���



pcmeqb

Byte comparison

void _stdcall _pcmpeqb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmeqbi(_mmxdata *array1,_mmxdata *imm,int n);

pcmeqw

Word comparison (16 bits)

void _stdcall _pcmpeqw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmpeqwi(_mmxdata *array1,_mmxdata *imm,int n);

pcmeqd

double word (32 bits) comparison

void _stdcall _pcmpeqd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmpeqdi(_mmxdata *array1,_mmxdata *imm,int n);



Packed compare for greater than

pcmgtb

void _stdcall _pcmpgtb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmpgtbi(_mmxdata *array1,_mmxdata *imm,int n);

pcmgtw

void _stdcall _pcmpgtw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmpgtwi(_mmxdata *array1,_mmxdata *imm,int n);

pcmgtd

void _stdcall _pcmpgtd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pcmpgtdi(_mmxdata *array1,_mmxdata *imm,int n);



Packed multiply and add

void _stdcall _pmaddwd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pmaddwdi(_mmxdata *array1,_mmxdata *imm,int n);
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Packed multiply high

For each vector element this instruction multiplies the four signed words of the destination operand with the four signed words of the source operand. The high order 16 bits of the 32-bit intermediate results are written to the destination operand.
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void _stdcall _pmulhw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pmulhwi(_mmxdata *array1,_mmxdata *array2,int n);



Packed multiply low

For each vector elemnt of 64 bits this instruction multiplies the four signed words of the destination operand with the four signed words of the source operand. The low order 16 bits of the 32 bit intermediate result are written to the destination vector element.
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void _stdcall _pmullw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pmullwi(_mmxdata *array1,_mmxdata *imm,int n);

Packed or

This instruction performs the bitwise logical or of the two given vectors.

void _stdcall _por(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _pori(_mmxdata *array1,_mmxdata *array2,int n);



Packed shift left logical

This instruction shifts the bits of each element of the first operand to the left by the amount specified by the corresponding element of the second operand The result of the operation is written to the destination vector.

void _stdcall _psllw(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psllwi(_mmxdata *array,unsigned char int8,int n);

void _stdcall _pslld(_mmxdata *array,_mmxdata *imm,int n);

void _stdcall _pslldi(_mmxdata *array,unsigned char int8,int n);

void _stdcall _psllq(_mmxdata *array,_mmxdata *imm,int n);

void _stdcall _psllqi(_mmxdata *array,unsigned char int8,int n);



Packed shift Right arithmetic

This instruction shifts the bits of each element of the first operand to the right by the amount specified by the corresponding element of the second operand The result of the operation is written to the destination vector.

void _stdcall _psrlw(_mmxdata *array,_mmxdata *imm,int n);

void _stdcall _psrlwi(_mmxdata *array,unsigned char int8,int n);

void _stdcall _psrld(_mmxdata *array,_mmxdata *imm,int n);

void _stdcall _psrldi(_mmxdata *array,unsigned char int8,int n);

void _stdcall _psrlq(_mmxdata *array,_mmxdata *imm,int n);

void _stdcall _psrlqi(_mmxdata *array,unsigned char int8,int n);



Packed Substract

This instructions are very similar to the corresponding ‘add’ routines.

void _stdcall _psubb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubbi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubwi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubdi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubsb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubsbi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubsw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubswi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubsb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubsbi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubsw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubswi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubusb(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubusbi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _psubusw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _psubuswi(_mmxdata *array1,_mmxdata *imm,int n);



Unpack high packed data

This instruction unpacks and interleaves the high-order data elements of each element of the array1 and 2.
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void _stdcall _punpckhbw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpckhbwi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _punpckhwd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpckhwdi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _punpckhdq(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpckhdqi(_mmxdata *array1,_mmxdata *imm,int n);



Unpack low packed data

This instruction unpacks and interleaves the low-order data elements of the destination and source operands into the destination operand.



void _stdcall _punpcklbw(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpcklbwi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _punpcklwd(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpcklwdi(_mmxdata *array1,_mmxdata *imm,int n);

void _stdcall _punpckldq(_mmxdata *array1,_mmxdata *array2,int n);

void _stdcall _punpckldqi(_mmxdata *array1,_mmxdata *imm,int n);
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Pxor

This instruction performs a logical exclusive or operation for all bits of the source and destination vectors.

void _stdcall _pxor(_mmxdata *array1,_mmxdata *array2,int n);



�Bugs

Consider this one, I have it fresh in my mind as it were yesterday.

I compile the ‘rcl’ resource compiler for lcc. I had done a modification to the Unix .y (yacc) grammar file, and recompiled rcl for the first time with lcc, after retrieving it from the Unix machine with ftp.



Just to test it, I type ‘rcl’ at the command line. The dreaded ‘Application eror’ box appears, telling me that rcl crashed. After some useless staring in the grammar file, I get into the debugger. The program seems to crash in a simple

fprintf(stderr, »Usage:\n ...\n »);



What is this? 



Maybe a compiler bug? Well, I pull an older version of the compiler from the backups and try again.



Crash



Well, I was doing some modifications to the linker yesterday: I cleaned up the code a little, added support for the registry to avoid typying the startup full path at each command line and other apparently minor modifications.



Maybe I introduced a new bug?



I pull an older version from the linker and try again. The bug doesn’t go away. Well, I rebuilded (again) crtdll.lib two days ago, the import library for the C run time. Maybe I introduced a bug there. Strange.



I pull an older version of the import library from the backups and try again. Nothing, but this time a missing export name appears. Yes, obviously. I rebuilt that library because of a real reason: it was missing that export. But really, I am dreaming here, an export library has nothing to do with stderr, this is nonsense. But I do not have the new corrected version anymore. 



I rebuild that from the .exp source using the implib utility. I hope that implib is working OK. Well do not get paranoic jacob...



I decide to use my old wonderful test program. I write

#include <stdio.h>

main(){fprintf(stderr, »Hello\n »);}



and compile that.



Crash.



What? This is impossible! I have already built dozens of programs using stderr damm it. What is happening here?



And then panic sets in. Slowly, very slowly but surely. All this work, years of it, are absolutely useless if lcc-win32 is unable to compile a program of a few dozens of bytes... When did I introduce that bug?



I switch to MSVC. Follow the program in binary. For the startup code, where the initialization of ‘stderr’ is done, I have no debugging information since I wrote that in assembler. Surely, I have the source, so I can open a window with an editor besides the debugger window, to see what the program is doing. The initialization of stderr goes on without any problem. The returned values from the system calls are correct. What is this, what is this, I get more and more nervous. 

I step in into the ‘main’ function. And then, I compare the value pushed by the program to the fprintf function with the value returned from the system earlier. What is this, it is pushing a WRONG ADDRESS!!!! 



Well, I found why the program crashes, but this looks even worst than before. Using Windows’s ‘calc’ program, I substract the two addresses, the one being pushed, and stderr’s one: almost 8K difference. The panic sets in: this is a linker bug.



Linker bugs are not the ‘easy’ stuff. Even for a small program like ‘hello’ there are dozens of import libraries object files to link in, hundreds of symbols, following all the operations of a small link in the debugger can take at least 3-4 hours of enormous concentration. And then that voice back in my mind... ‘You are CRAZY jacob, Microsoft has dozens and dozens of bright young people working in their compiler. You will NEVER make it alone, it is just impossible, utterly impossible!’. I turn it off, as you do when you zap to other program in the tv.



Did I introduce that bug yesterday, when I changed that code, or is this an older bug, that surfaces now?



But... wait, I have already pulled an older linker from the backups! This is an older bug obviously, and has nothing to do with my changes yesterday. Where is it?



I spend some hours staring at the code, making modifications here and there. Nothing, the program will always crash.



But where is this wrong address coming from actually? I dump the object code and look at the disassembled code. What is this? It is pushing the address of _iob instead of the address of ‘stderr’. Well obviously this is the reason. But why is this _iob being pushed? I look at my include files. Nothing. ‘stderr’ is defined correctly as an extern FILE *. But there is obviously SOMETHING that is changing ‘stderr’ into ‘_iob’. The dumps shows clearly the relocation to an _iob symbol. Where does that come from? There is a bug in the preprocessor?



Well, it could be, I made the same modification to the preprocessor that I did to the linker: Lookup of the ‘include’ path in the registry. But this is nonsense. I didn’t touch any of the macro-expansion logic, I just added a routine to replace the ‘getenv’ call with that ‘INCLUDE’ environent variable that was somehow always pointing to the wrong MSVC header files. Replace it with a clean solution: lookup in the registry. This just can’t change the workings of the preprocessor...



But wait, maybe that _iob comes from the MSVC header files? Maybe this is not a linker bug after all. I start an editor with the contents of <stdio.h> of Microsoft’s compiler. And YES, look at this:

#define stderr (&_iob[2])

THERE IT IS!



I am using the wrong header files, that’s all!



But now I am in a general mess: I have done several modifications to the linker, maybe introducing more bugs, Oh damm it, I have to undo all that. And I did no backup of the new version since I considered it buggy!



The panic starts to fade. Well, I will undo those changes. I clean up the best that I can, because I do not want to rewrite the Registry functions: they were messy to write, they were working. Besides there were other bugs corrections I didn’t want to loose.



Half an hour later I have undone them. I recompile the linker, and compile my test program forcing it to choose lcc’s header files:

d:\wedit\lcc\bug26 > lcclnk -L d:\lcc\lib lcccrt0.obj hello.obj



Crash



Well obviously, I should recompile first... getting tired.



d:\wedit\lcc\bug26 > lcc -Id:\lcc\include d:\lcc\lib\lcccrt0.obj hello.obj

d:\wedit\lcc\bug26 > lcclnk -L d:\lcc\lib lcccrt0.obj hello.obj

d:\wedit\lcc\bug26 > hello

hello

d:\wedit\lcc\bug26 >



MMM this works. I was just using the wrong header files. But I had changed lcc to use the registry! What happened? I start regedit and look at the values in the registry. They are OK. Why it doesn’t use them then? 



I recompile lcc with MSVC. It looks correctly in the registry and generates the good code. I start getting nervous again. A bug in the optimizer? I have lost almost the whole day in this nonsense.



My wife tells me I promised to get away from the machine today. I am looking for this bug since 8:AM and is almost 4:PM now. I stop, take a break. It is cold outside, a chilling freezing cold: minus five C°. I eat something and go for a walk in Paris with Annie.



After dinner, I come back to the machine. I reboot, rebuild first the linker, then I recompile lcc from source, make two generations, and install it. I compile the test program. It works perfectly the first time. WHAT HAPPENED??? 



Then I realize it: Right at the start, when I saw the crash in rcl, I pulled an older version of the compiler. The one that DIDN’T use the registry. But in my mind, the ‘wrong headers’ bug was in the ‘corrected’ folder. Gone for good. So I expected that the older version used the registry in an infantile lapsus. Of course it didn’t, and just used the ‘INCLUDE’ environment variable that pointed to the MSVC’s header files... That led me astray in a chase for an inexistant linker bug. Well, I did the whole circle, let’s come back to rcl. It should work now.



Crash as in the morning



I look at the address of ‘stderr’. It is completely wrong. It is late. I will change the INCLUDE path, and force it to lcc’s. Well, nothing. Crash.



And then I see in the linker command line:

-subsystem windows

Well OF COURSE! Windows programs do not initialize the standard handles! In a haste I hurry up to change that to

-subsystem console



The error message of rcl appears in the screen. The ‘stderr’ variable is OK. It was just that: a wrong linker specification in a link...

 

A whole day of hard work is lost. For nothing. I am as advanced as I was in the morning. But I gained a good advise to put in the ‘Troubleshooting’ part of the doc...



�Appendix 1: Summary of the assembler syntax.

Pseudo-instructions

.align <abs-expr> , <abs-expr>

Pad the location counter to a storage boundary. The first expression is the number of low-order zero bits the location counter must have after advancement. For example .align 3 advances the location counter until it a multiple of 8. If the location counter is already a multiple of 8, no change is needed. The second expression gives the value to be stored in the padding bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are zero.

.byte <expressions>

.byte expects zero or more expressions, separated by commas. Each expression is assembled into the next byte.

.bss

Sets the current section to the bss section.

.comm <symbol' , <length> 

.comm declares a named common area in the bss section.The linker will reserve space for it at link time.

.data

.data' tells the assembler to assemble the following statements onto the end of the data section.

.extern <symbol>

This pseudo instruction tells the assembler to declare the given symbol as extern to the module being assembled.

.globl<symbol>

The indicated symbol will be declared as globally visible.

.lcomm<symbol>

This reserves space for a local symbol (not visible by other modules) in the .bss section.

.line<number>

This indicates that the current offset in the text section will be assigned to the program source line given by <number>. This ends up in the debugging information.

.long <number>

Initializes a 4 byte location to the given number.

.text

Sets the current section to the text section.



Syntax

Immediate operands are preceded by `$'; (Intel `push 4' is « pushl $4»).

Register operands are preceded by `%'.

Absolute (as opposed to PC relative) jump/call operands are prefixed by `*'.

Intel syntax use the opposite order for source and destination operands. Intel `add eax, 4' is addl $4, %eax.

The size of memory operands is determined from the last character of the opcode name. Opcode suffixes of `b', `w', and `l' specify byte (8-bit), word (16-bit), and long (32-bit) memory references. Intel syntax accomplishes this by prefixes memory operands (NOT the opcodes themselves) with `byte ptr', `word ptr', and `dword ptr'. Thus, Intel assembler mov al, byte ptr <foo> is movb <foo>, %al.

Opcode naming

Opcode names are suffixed with one character modifiers which specify the size of operands. The letters `b', `w', and `l' specify byte, word, and long operands. If no suffix is specified by an instruction and it contains no memory operands then lcc’s assembler tries to fill in the missing suffix based on the destination register operand (the last one by convention). 



Thus, `mov %ax, %bx' is equivalent to `movw %ax, %bx'; also, `mov $1, %bx' is equivalent to `movw $1, %bx'.



Almost all opcodes have the same names than Intel format. There are a few exceptions. The sign extend and zero extend instructions need two sizes to specify them. They need a size to sign/zero extend FROM and a size to zero extend TO. This is accomplished by using two opcode suffixes.



Base names for sign extend and zero extend are `movs...' and `movz...' (`movsx' and `movzx' in Intel syntax). The opcode suffixes are tacked on to this base name, the FROM suffix before the TO suffix. Thus, `movsbl %al, %edx' is move sign extend FROM %al TO %edx.'' Possible

suffixes, thus, are `bl' (from byte to long), `bw' (from byte to word), and `wl' (from word to long).



Memory references

An Intel syntax indirect memory reference of the form 

<section>:[<base> + <index>*<scale> + <disp>]

  is translated into the syntax

<section>:<disp>(<base>, <index>, <scale>)

where 

<base> and <index> are the optional 32-bit base and index registers, <disp> is the optional displacement, and <scale>, taking the values 1, 2, 4, and 8, multiplies <index> to calculate the address of the operand. 

If no <scale> is specified, <scale> is taken to be 1. <section> specifies the optional section register for the memory operand, and may override the default section register (see a pentium manual for section register defaults). 

Note that section overrides in MUST have be preceded by a `%'.



Here are some examples of Intel and lcc style memory references:



lcc:	-4(%ebp), 		  Intel:  [ebp - 4]'

<base> is %ebp; <disp> is -4. <section> is missing, and the default section is used (`%ss' for addressing with `%ebp' as the base register). <index>, <scale> are both missing.

lcc:	foo(,%eax,4)	 	Intel: [foo + eax*4]

<index> is `%eax' (scaled by a <scale> 4); <disp> is `foo'. All other fields are missing. The section register here defaults to `%ds'.



lcc:	foo(,1);		Intel [foo]

This uses the value pointed to by foo as a memory operand. Note that <base> and <index> are both missing, but there is only ONE ,. This is a syntactic exception.



lcc:	%gs:foo;		Intel gs:foo

This selects the contents of the variable `foo' with section register <section> being `%gs'.

Absolute (as opposed to PC relative) call and jump operands must be prefixed with `*'. If no `*' is specified, lcc always chooses PC relative addressing for jump/call labels. Any instruction that has a memory operand MUST specify its size (byte, word, or long) with an opcode suffix (`b', `w', or `l',respectively).
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�

�This has absolutely nothing to do with object oriented rogramming.

�If you use the driver for the compilation process, this phase is done by ‘rcc.exe’, if you do not use the driver, this phase is performed by ‘lcc.exe’

�COFF meanse Common Object File Format

�Normally you do not write resource files, specially dialog box resources, by hand. It is just too tedious and boring, and all people use a tool called ‘resource editor’, to design the appearence of the dialog box resources at the screen, and generate automatically the .rc file.Lcc-win32 uses the tool called ‘weditres.exe’ for this purpose.

�For ‘Dynamically Linked Library’ I think, 

�You should be able to avoid this instruction if you ignore the ‘libasm.asm’ file in the compiler sources, by disabling the assembly language accelerators. This is done by NOT #defining the ASM_LIB preprocessor symbol.

�This figure is taken from the document ‘Instruction set format for the 6x86 processor’ published by CYRIX Corp.

�I use the word ‘Table’ in a generic sense. This could be a structure, or whatever, the machine doesn’t care. It doesn’t understand anything about the high level language concepts we are used to in C.

�COFF means Common Object File Format. It is a specification that was developed originally by Unix systems, and was adapted by Microsoft for its new 32 bit ‘Portable Executable’ object file format.

�This is done in the function ‘fixup_segment’ near the end of the asm.c file.

�Besides, this allows the user to turn off the optimizer when there is a bug in it... see the section in quality control below.

�All controls have the default WS_CHILD and WS_VISIBLE styles

�Multiple Document Interface

�I would better use ‘p’ for parallel, but this is a matter of taste...
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�This work was supported in part by a grant from my wife... :-)

�The predefined resource types are the following:

#define     RT_NEWRESOURCE     0x2000

#define     RT_ERROR           0x7fff

#define     RT_CURSOR          1

#define     RT_BITMAP          2

#define     RT_ICON            3

#define     RT_MENU            4

#define     RT_DIALOG          5

#define     RT_STRING          6

#define     RT_FONTDIR         7

#define     RT_FONT            8

#define     RT_ACCELERATORS    9

#define     RT_RCDATA          10

#define     RT_MESSAGETABLE    11

#define     RT_GROUP_CURSOR    12

#define     RT_GROUP_ICON      14

#define     RT_VERSION         16

#define     RT_NEWBITMAP       (RT_BITMAP|RT_NEWRESOURCE)

#define     RT_NEWMENU         (RT_MENU|RT_NEWRESOURCE)

#define     RT_NEWDIALOG       (RT_DIALOG|RT_NEWRESOURCE)

  








