

Prefab Foundry

Specification

�EMBED PBrush���

28 January, 1998

Tsunami Technology, Inc.

Suzy_Farkus

�
� TOC \o "1-3" �

Introduction	� PAGEREF _Toc411130775 \h ��3�

Purpose	� PAGEREF _Toc411130776 \h ��3�

What is the RMG?	� PAGEREF _Toc411130777 \h ��3�

What do you mean Random Map?	� PAGEREF _Toc411130778 \h ��3�

What is a Prefab Foundry?	� PAGEREF _Toc411130779 \h ��3�

What is a Prefab?	� PAGEREF _Toc411130780 \h ��3�

What tools will I need?	� PAGEREF _Toc411130781 \h ��3�

What are these MMD files?	� PAGEREF _Toc411130782 \h ��4�

Restrictions?	� PAGEREF _Toc411130783 \h ��4�

Getting Started	� PAGEREF _Toc411130784 \h ��5�

Styles	� PAGEREF _Toc411130785 \h ��5�

Exits	� PAGEREF _Toc411130786 \h ��5�

The Quantum Unit	� PAGEREF _Toc411130787 \h ��6�

Dimensions	� PAGEREF _Toc411130788 \h ��6�

Required Floor Plans	� PAGEREF _Toc411130789 \h ��7�

Other Requirements	� PAGEREF _Toc411130790 \h ��7�

What now?	� PAGEREF _Toc411130791 \h ��8�

Embellishments	� PAGEREF _Toc411130792 \h ��8�

The MMD Editor	� PAGEREF _Toc411130793 \h ��9�

What are these MMD files?	� PAGEREF _Toc411130794 \h ��9�

How do I make MMD files?	� PAGEREF _Toc411130795 \h ��9�

Subcells	� PAGEREF _Toc411130796 \h ��10�

Now What	� PAGEREF _Toc411130797 \h ��11�

��
Introduction

Purpose

The purpose of this document is to outline the requirements of generating Prefab Foundries for use with the Random Map Generator software created by Tsunami Technology, Inc. For the purposes of this document when the abbreviation RMG is used it is to be understood to represent the Random Map Generator.

It is assumed that the reader has at least some experience with map creation for Quake, Quake II and or Hexen II.

What is the RMG?

The RMG is a set of software programs created by Tsunami Technology, Incorporated for the express purpose of generating random maps for Quake II. It is planned that these programs will be expanded upon to produce random maps for Quake I and Hexen II as well.

What do you mean Random Map?

If a given set of prefabs follow a given set of guidelines, then it has been determined that they may be assembled in such a fashion as to live up to the term randomly generated. In other words a prefab foundry is taken as a whole and its prefabs are snapped together in ways which may not have been conceived at the time of the foundries inception.

A set of algorithms may be implemented in such a way that take advantage of the set of rules which govern the creation of a prefab foundry so as to generate a meaningful map in a random fashion.

What is a Prefab Foundry?

Prefab Foundry is a term coined by our very own Scorcher to describe a library of prefabs which follow a distinct set of patterns and styles such that when ‘snapped’ together generate a valid map file.

In it’s most simple form, a Prefab Foundry is a set of small .MAP files which follow the same set of rules and convey an overall style or theme.

What is a Prefab?

A prefab is a small, discrete unit, which belongs to the larger group known as the Prefab Foundry. A prefab is simply an individual unit of map. Later we’ll more rigidly define what a prefab is, but for now it is ample enough to know that a prefab may be thought of as a single block. It takes many blocks to build a meaningful map.

What tools will I need?

You will need the Prefab Foundry Development Kit or PFDK. You will need a map editor capable of outputting .MAP files compatible with ID Software’s tools, which compile maps, QBSP3.EXE, QVIS3.EXE and QRAD3.EXE along with those very tools. You will also need a copy of Tsunami’s MMDEdit application used for the generation of .MMD files.

What are these MMD files?

MMD files describe summary information regarding your prefabs to RMG. MMD files are required to accurately describe your prefabs. If the MMD files do not accurately describe your prefabs, the resulting maps will more than likely suffer from leaks. We’ll discuss MMD files and their generation in greater detail later.

Restrictions?

As a prefab author there are certain rules that you must follow to ensure that your foundry produces top-notch maps. One thing to be aware of is that the user of RMG has the right to specify the size of the resulting map. If you create prefabs, which will not fit within the boundaries specified by the user, your foundry will become unusable for that set of parameters, which the user has configured. This is something to be aware of if you prefer to generate large prefabs.

For this current alpha release, entities, which make use of the target and target_name properties, are illegal and not supported. Very soon we will be supporting this type of entity, but for now they will not work. The engine will try and pass them through and you may get lucky and have them work, but for the most part it is not recommended that these types of entities be included in your prefabs.

�
Getting Started

Styles

Prior to beginning a new Prefab Foundry, it is assumed that the author has a certain style in mind. By style I am describing a texturing scheme and general look and feel to a level. Authoring a Prefab Foundry is a little different than authoring an entire map. When authoring a foundry, you describe the pieces, which will generate an entire map, not the map itself. This is a shift in paradigm for most map authors. No longer are you in full control the resulting map. You only control the pieces.

�Exits

A vital part of what makes up the character or style of a prefab foundry is the shape of the exits. With the current release of RMG, the shape of your exits is irrelevant as far as the engine is concerned. The only thing that you need to worry about is consistency. For instance if you decide to use rectangular exits for northern and southern exits of your foundry, you should make all of your prefabs follow this rule. It is perfectly legal to use different exit types for the different cardinal directions. For instance if you wanted to use the rectangular exits for northern and southern exits, but use octagonal shaped exits for eastern and western, this is perfectly fine. The key is consistency, because as mentioned above, your prefabs must be able to fit together like blocks. The other thing to be aware of concerning exits is that one prefab with a northern exit will eventually be aligned with a prefab with a southern exit. The two exit shapes should match. I suppose that this depends on the ‘style’ that you want your foundry to portray.

�
The Quantum Unit

For the purposes of our discussion, a quantum unit is the unit of map, which may not be divided. In other words, there is a unit for each Prefab Foundry, which is indivisible. For the current alpha release, this unit is 256. See the section on Dimension for more about this topic.

Dimensions

For the current release of RMG dimension of maps are restricted to multiples of 256. A prefab may be no smaller than 256x256x256. That is 256 in width by 256 in length by 256 in height. See figure 1. This doesn’t mean that as a Prefab Foundry author you are restricted to 256x256x256 prefabs. No, no, no! You may go larger, as large as you wish, although it is recommended that you not exceed 2048x2048x2048.

�EMBED PBrush���

Figure � SEQ Figure * ARABIC �1�

�EMBED PBrush���

Figure � SEQ Figure * ARABIC �2�

�

Required Floor Plans

There are several floor plans that are required. They are illustrated below in figure 3. In this diagram, each square should be considered the bounding box of a prefab. The black areas are the results of a CSG subtraction and represent corridors, or areas in which the player may walk. For this alpha release of RMG these fifteen floor plans must be represented in your foundry. If they are not, the RMG may paint itself into a corner and lock up the user’s computer. In future releases, our generation algorithms are expected to be more robust and able to detect these types of situations.

�EMBED PBrush���

Figure � SEQ Figure * ARABIC �3�

Other Requirements

For this current release of RMG each prefab should have a single player spawn point. The way our current algorithms work, any prefab may be called upon to provide the spawn point for the player. In future releases of RMG this is expected to be more robust and the requirement will be relaxed.

Any lighting or other entities that you wish to represent within a map that results from using your Prefab Foundry must be placed within the given prefab.

Another requirement of this version of RMG is that each prefab must be anchored to the origin (0,0,0) and extends only in positive directions. In other words, no point of any brush may have a value less than zero.

�
What now?

Embellishments

By now, you’ve gotten the requirements out of the way, so keep building upon your theme. Add rooms, corridors, ramps, and staircases, split level prefabs, lifts, etc.

As long as you stick to the restrictions outlined above you should be okay.

�
The MMD Editor

What are these MMD files?

MMD files describe each prefab to the RMG. Without the MMD files RMG won’t be able to use your Prefab Foundry. As far as the abbreviation, MMD stands for Map MetaData.

How do I make MMD files?

Use the MMDEdit.EXE utility provided with the PFDK. I apologize but the current version of this tool is rather clumsy. I was going for rapid development not ease of use. Anyway, the program consists of two dialog boxes.

The first dialog requires the user to enter the .MAP file, which corresponds, to the .MMD file, which is going to be produced. The user must also enter the overall dimensions of the prefab in Quantum Units. Although the ID for this prefab is shown, this is for reference only, it is not necessary for the user to know or remember this value.

�

Figure � SEQ Figure * ARABIC �4�

The second dialog is a little trickier. Figure 5 shows the second dialog.

�

Figure � SEQ Figure * ARABIC �5�

In this Exit Definition dialog, the user must specify each an every exit from their prefab. If each exit is not accurately accounted for, leaks in the resulting map will be the result. The Exit Definition Dialog deserves some further explanation….

Subcells

In regards to defining the exits to the prefabs, each prefab may be considered as an array of subcells. Each subcell being exactly one Quantum Unit in the x, y and z directions. If, for instance we had a prefab of 2x2x1 Quantum Units, this prefab, in terms of subcells, may be thought of as a three dimensional array of 2x2x1 subcells.

It is extremely important that for the definition exits, you understand this concept. Figure 6 below illustrates the method of assigning coordinates for a prefab, which are 2x2x1.

�EMBED PBrush���

Figure � SEQ Figure * ARABIC �6�

Now then, referring back to figure 5 for the exit definition dialog, the x, y, and z drop down lists allow you to select which subcell the exit that your are about to define lies in. Once the subcell has been selected, you need to place check marks for all directions, which apply to this subcell then, click the Add button. Rudimentary data validation is in place to disallow the illegal placement of exits.

�
Now What

Now you need to test your newly created Prefab Foundry. For now, this basically entails adjusting the settings of the RandomMap.INI file and compiling and running several maps to ensure that you have no leaks. Later, we’ll have tools, which can verify that your Prefab Foundry is up to snuff, and relatively bug free.

